

VG BEGINNERS TO MASTERING C

Topics covered

Fundamentals of C

o What is C Language

o History of C

o Features of C

o How to install C

o First C Program

o Flow of C Program

o printf scanf

o Variables in C

o Data Types in C

o Keywords in C

o C Operators

o C Comments

o C Escape Sequence

o Constants in C

C Control Statements

o C if-else

o C switch

o C Loops

o C do-while loop

o C while loop

o C for loop

o C break

o C continue

o C goto

o Type Casting

C Functions

o What is function

o Call: Value & Reference

o Recursion in C

o Storage Classes

C Array

o 1-D Array

o 2-D Array

o Array to Function

C Pointers

o C Pointers

o C Pointer to Pointer

o C Pointer Arithmetic

C Dynamic Memory

o Dynamic memory

C Structure Union

o C Structure

o C Array of Structures

o C Nested Structure

o C Union

C File Handling

o C File Handling

o C fprintf() fscanf()

o C fputc() fgetc()

o C fputs() fgets()

o C fseek()

o C rewind()

o C ftell()

C Preprocessor

o C Preprocessor

o C Macros

o C #include

o C #define

o C #undef

o C #ifdef

o C #ifndef

o C #if

o C #else

o C #error

o C #pragma

C Command Line

o Command Line Arguments

C Strings

o String in C

o C gets() & puts()

o C String Functions

o C strlen()

o C strcpy()

o C strcat()

o C strcmp()

o C strrev()

o C strlwr()

o C strupr()

o C strstr()

C Math

o C Math Functions

Error Handling in C

o C –Error Handling

Searching and Sorting

o Linear Search

o Binary Search

o Selection Sort

o Bubble Sort

o Insertion Sort

o Merge Sort

Frequently Asked C programs

o Fibonacci Series

o Prime number

o Palindrome number

o Factorial

o Armstrong number

o Sum of Digits

o Reverse Number

o Swap two numbers without using third variable

o Print "hello" without using semicolon

o Assembly Program in C

o C Program without main() function

o Decimal to Binary

o Alphabet Triangle

o Number Triangle

o Fibonacci Triangle

o Number in Characters

Fundamentals of C

C programming language was developed in 1972 by Dennis Ritchie at bell laboratories

of AT&T (American Telephone & Telegraph), located in the U.S.A.

Dennis Ritchie is known as the founder of the C language.

Initially, C language was developed to be used in UNIX operating system. It inherits
many features of previous languages such as B and BCPL.

The C Language is developed for creating system applications that directly interact with the
hardware devices such as drivers, kernels, etc.

C programming is considered as the base for other programming languages, that is why it is
known as mother language.

It can be defined by the following ways:

1. Mother language

2. System programming language

3. Procedure-oriented programming language

4. Structured programming language

5. Mid-level programming language

1) C as a mother language

C language is considered as the mother language of all the modern programming languages

because most of the compilers, JVMs, Kernels, etc. are written in C language, and

most of the programming languages follow C syntax, for example, C++, Java, C#, etc.

It provides the core concepts like the array, strings, functions, file handling, etc. that are

being used in many languages like C++, Java, C#, etc.

2) C as a system programming language

A system programming language is used to create system software. C language is a system
programming language because it can be used to do low-level programming (for
example driver and kernel). It is generally used to create hardware devices, OS, drivers,

kernels, etc. For example, Linux kernel is written in C.

It can't be used for internet programming like Java, .Net, PHP, etc.

3) C as a procedural language

A procedure is known as a function, method, routine, subroutine, etc. A procedural

language specifies a series of steps for the program to solve the problem.

A procedural language breaks the program into functions, data structures, etc.

C is a procedural language. In C, variables and function prototypes must be declared before
being used.

4) C as a structured programming language

A structured programming language is a subset of the procedural language. Structure
means to break a program into parts or blocks so that it may be easy to understand.

In the C language, we break the program into parts using functions. It makes the program

easier to understand and modify.

5) C as a mid-level programming language

C is considered as a middle-level language because it supports the feature of both low-
level and high-level languages. C language program is converted into assembly code, it
supports pointer arithmetic (low-level), but it is machine independent (a feature of high-
level).

A Low-level language is specific to one machine, i.e., machine dependent. It is machine
dependent, fast to run. But it is not easy to understand.

A High-Level language is not specific to one machine, i.e., machine independent. It is

easy to understand.

Features of C Language

C is the widely used language. It provides many features that are given below.

1. Simple

2. Machine Independent or Portable

3. Mid-level programming language

4. structured programming language

5. Rich Library

6. Memory Management

7. Fast Speed

8. Pointers

9. Recursion

10. Extensible

1) Simple

C is a simple language in the sense that it provides a structured approach (to break the
problem into parts), the rich set of library functions, data types, etc.

2) Machine Independent or Portable

Unlike assembly language, c programs can be executed on different machines with
some machine specific changes. Therefore, C is a machine independent language.

3) Mid-level programming language

Although, C is intended to do low-level programming. It is used to develop system
applications such as kernel, driver, etc. It also supports the features of a high-level
language. That is why it is known as mid-level language.

4) Structured programming language

C is a structured programming language in the sense that we can break the program
into parts using functions. So, it is easy to understand and modify. Functions also
provide code reusability.

5) Rich Library

C provides a lot of inbuilt functions that make the development fast.

6) Memory Management

It supports the feature of dynamic memory allocation. In C language, we can free the
allocated memory at any time by calling the free() function.

7) Speed

The compilation and execution time of C language is fast since there are lesser inbuilt
functions and hence the lesser overhead.

8) Pointer

C provides the feature of pointers. We can directly interact with the memory by using the
pointers. We can use pointers for memory, structures, functions, array, etc.

9) Recursion

In C, we can call the function within the function. It provides code reusability for every

function. Recursion enables us to use the approach of backtracking.

10) Extensible

C language is extensible because it can easily adopt new features.

How to install C

There are many compilers available for c and c++. You need to download any one. Here, we

are going to use Turbo C++. It will work for both C and C++. To install the Turbo C
software, you need to follow following steps.

1. Download Turbo C++

2. Create turboc directory inside c drive and extract the tc3.zip inside c:\turboc

3. Double click on install.exe file

4. Click on the tc application file located inside c:\TC\BIN to write the c program

1) Download Turbo C++ software

You can download turbo c++ from the link below.

https://drive.google.com/file/d/1kPsM1wuhZ6xJKIxbX6tMuos49elAtG6A/view?usp=shari

ng

2) Create turboc directory in c drive and extract the tc3.zip

Now, you need to create a new directory turboc inside the c: drive. Now extract the tc3.zip
file in c:\truboc directory.

3) Double click on the install.exe file and follow steps

https://drive.google.com/file/d/1kPsM1wuhZ6xJKIxbX6tMuos49elAtG6A/view?usp=sharing
https://drive.google.com/file/d/1kPsM1wuhZ6xJKIxbX6tMuos49elAtG6A/view?usp=sharing

Now, click on the install icon located inside the c:\turboc

It will ask you to install c or not, press enter to install.

Change your drive to c, press c.

Press enter, it will look inside the c:\turboc directory for the required files.

Select Start installation by the down arrow key then press enter.

Now C is installed, press enter to read documentation or close the software.

4) Click on the tc application located inside c:\TC\BIN

Now double click on the tc icon located in c:\TC\BIN directory to write the c program.

In windows 7 or window 8, it will show a dialog block to ignore and close the application
because fullscreen mode is not supported. Click on Ignore button.

Now it will showing following console.

First C Program

Before starting the abcd of C language, you need to learn how to write, compile and run the

first c program.

To write the first c program, open the C console and write the following code:

#include <stdio.h>

int main()

{

printf("Hello C Language");

return 0;

}

is called as preprocessor directive.

Include is a directory where all the header files are located. It’s physical path is C:\TC

Stdio.h is the header file.

#include <stdio.h> includes the standard input output library functions. The printf()
function is defined in stdio.h .

int main() The main() function is the entry point of every program in c language.

printf() The printf() function is used to print data on the console.

return 0 The return 0 statement, returns execution status to the OS. The 0 value is used
for successful execution and 1 for unsuccessful execution.

How to compile and run the c program

There are 2 ways to compile and run the c program, by menu and by shortcut.

By menu

Now click on the compile menu then compile sub menu to compile the c program.

Then click on the run menu then run sub menu to run the c program.

By shortcut

Or, press ctrl+f9 keys compile and run the program directly.

You will see the following output on user screen.

You can view the user screen any time by pressing the alt+f5 keys.

Now press Esc to return to the turbo c++ console.

Flow of C Program
The C program follows many steps in execution. To understand the flow of C program well,

let us see a simple program first.

#include <stdio.h>

#include <conio.h>

int main()

{

printf("Hello C Language");

getch();

return 0;

}

Execution Flow

Let's try to understand the flow of above program by the figure given below.

1) C program (source code) is sent to preprocessor first. The preprocessor is responsible to

convert preprocessor directives into their respective values. The preprocessor generates an

expanded source code.

2) Expanded source code is sent to compiler which compiles the code and converts it into

assembly code.

3) The assembly code is sent to assembler which assembles the code and converts it into

object code. Now a simple.obj file is generated.

4) The object code is sent to linker which links it to the library such as header files. Then it

is converted into executable code. A simple.exe file is generated.

5) The executable code is sent to loader which loads it into memory and then it is executed.
After execution, output is sent to console.

printf() and scanf() in C

The printf() and scanf() functions are used for input and output in C language. Both

functions are inbuilt library functions, defined in stdio.h (header file).

printf() function

The printf() function is used for output. It prints the given statement to the console.

The syntax of printf() function is given below:

printf("format string",argument_list);

The format string can be %d (integer), %c (character), %s (string), %f (float) etc.

scanf() function

The scanf() function is used for input. It reads the input data from the console.

scanf("format string",argument_list);

Program to print cube of given number

Let's see a simple example of c language that gets input from the user and prints the cube

of the given number.

#include<stdio.h>

int main()

{

int number;

printf("enter a number:");

scanf("%d",&number);

printf("cube of number is:%d ",number*number*number);

return 0;

}

Output
enter a number:5

cube of number is:125

The scanf("%d",&number) statement reads integer number from the console and stores
the given value in number variable.

The printf("cube of number is:%d ",number*number*number) statement prints the
cube of number on the console.

Program to print sum of 2 numbers

Let's see a simple example of input and output in C language that prints addition of 2

numbers.

#include<stdio.h>

int main()

{

int x=0,y=0,result=0;

printf("enter first number:");

scanf("%d",&x);

printf("enter second number:");

scanf("%d",&y);

result=x+y;

printf("sum of 2 numbers:%d ",result);

return 0;

}

Output
enter first number:9

enter second number:9

sum of 2 numbers:18

Variables in C

A variable is a name of the memory location. It is used to store data. Its value can be

changed, and it can be reused many times.

It is a way to represent memory location through symbol so that it can be easily identified.

Let's see the syntax to declare a variable:

type variable_list;

The example of declaring the variable is given below:

int a;

float b;

char c;

Here, a, b, c are variables. The int, float, char are the data types.

We can also provide values while declaring the variables as given below:

int a=10,b=20;//declaring 2 variable of integer type

float f=20.8;

char c='A';

Variables in C

A variable is a name of the memory location. It is used to store data. Its value can be

changed, and it can be reused many times.

It is a way to represent memory location through symbol so that it can be easily identified.

Let's see the syntax to declare a variable:

type variable_list;

The example of declaring the variable is given below:

int a;

float b;

char c;

Here, a, b, c are variables. The int, float, char are the data types.

We can also provide values while declaring the variables as given below:

int a=10,b=20;//declaring 2 variable of integer type

float f=20.8;

char c='A';

Rules for defining variables

o A variable can have alphabets, digits, and underscore.

o A variable name can start with the alphabet, and underscore only. It can't start with

a digit.

o No whitespace is allowed within the variable name.

o A variable name must not be any reserved word or keyword, e.g. int, float, etc.

Valid variable names:

int a;

int _ab;

int a30;

Invalid variable names

int 2;

int a b;

int long;

Types of Variables in C

There are many types of variables in c:

1. local variable

2. global variable

3. static variable

4. automatic variable

5. external variable

Local Variable

A variable that is declared inside the function or block is called a local variable.

It must be declared at the start of the block.

void function1()

{

int x=10;//local variable

}

You must have to initialize the local variable before it is used.

Global Variable

A variable that is declared outside the function or block is called a global variable. Any

function can change the value of the global variable. It is available to all the functions.

It must be declared at the start of the block.

int value=20;//global variable

void function1()

{

int x=10;//local variable

}

Static Variable

A variable that is declared with the static keyword is called static variable.

It retains its value between multiple function calls.

void function1()

{

int x=10;//local variable

static int y=10;//static variable

x=x+1;

y=y+1;

printf("%d,%d",x,y);

}

If you call this function many times, the local variable will print the same value for each

function call, e.g, 11,11,11 and so on. But the static variable will print the incremented

value in each function call, e.g. 11, 12, 13 and so on.

Automatic Variable

All variables in C that are declared inside the block, are automatic variables by default. We
can explicitly declare an automatic variable using auto keyword.

void main()

{

int x=10;//local variable (also automatic)

auto int y=20;//automatic variable

}

We can share a variable in multiple C source files by using an external variable. To declare

an external variable, you need to use extern keyword.

myfile.h

extern int x=10;//external variable (also global)

program1.c

#include "myfile.h"

#include <stdio.h>

void printValue()

{

 printf("Global variable: %d", global_variable);

}

Data Types in C

A data type specifies the type of data that a variable can store such as integer, floating,
character, etc.

There are the following data types in C language.

Types Data Types

Basic Data Type int, char, float, double

Derived Data Type array, pointer, structure, union

Enumeration Data Type enum

Void Data Type void

Basic Data Types
The basic data types are integer-based and floating-based. C language supports both signed

and unsigned literals.

The memory size of the basic data types may change according to 32 or 64-bit operating
system.

Let's see the basic data types. Its size is given according to 32-bit architecture.

Data Types Memory Size Range

char 1 byte −128 to 127

signed char 1 byte −128 to 127

unsigned char 1 byte 0 to 255

short 2 byte −32,768 to 32,767

signed short 2 byte −32,768 to 32,767

unsigned short 2 byte 0 to 65,535

int 2 byte −32,768 to 32,767

signed int 2 byte −32,768 to 32,767

unsigned int 2 byte 0 to 65,535

short int 2 byte −32,768 to 32,767

signed short int 2 byte −32,768 to 32,767

unsigned short int 2 byte 0 to 65,535

long int 4 byte -2,147,483,648 to 2,147,483,647

signed long int 4 byte -2,147,483,648 to 2,147,483,647

unsigned long int 4 byte 0 to 4,294,967,295

float 4 byte

double 8 byte

long double 10 byte

Keywords in C

A keyword is a reserved word. You cannot use it as a variable name, constant name, etc.

There are only 32 reserved words (keywords) in the C language.

A list of 32 keywords in the c language is given below:

auto break case char const continue default do

double else enum extern float for goto if

int long register return short signed sizeof static

struct switch typedef union unsigned void volatile while

We will learn about all the C language keywords later.

C Operators

An operator is simply a symbol that is used to perform operations. There can be many types

of operations like arithmetic, logical, bitwise, etc.

There are following types of operators to perform different types of operations in C
language.

o Arithmetic Operators

o Relational Operators

o Shift Operators

o Logical Operators

o Bitwise Operators

o Ternary or Conditional Operators

o Assignment Operator

o Misc Operator

Precedence of Operators in C

The precedence of operator species that which operator will be evaluated first and next. The
associativity specifies the operator direction to be evaluated; it may be left to right or right
to left.

Let's understand the precedence by the example given below:

int value=10+20*10;

The value variable will contain 210 because * (multiplicative operator) is evaluated before
+ (additive operator).

The precedence and associativity of C operators is given below:

Category Operator Associativity

Postfix () [] -> . ++ - - Left to right

Unary + - ! ~ ++ - - (type)* & sizeof Right to left

Multiplicative * / % Left to right

Additive + - Left to right

Shift << >> Left to right

Relational < <= > >= Left to right

Equality == != Left to right

Bitwise AND & Left to right

Bitwise XOR ^ Left to right

Bitwise OR | Left to right

Logical AND && Left to right

Logical OR || Left to right

Conditional ?: Right to left

Assignment = += -= *= /= %=>>= <<= &= ^= |= Right to left

Comma , Left to right

Comments in C

Comments in C language are used to provide information about lines of code. It is widely

used for documenting code. There are 2 types of comments in the C language.

1. Single Line Comments

2. Multi-Line Comments

Single Line Comments

Single line comments are represented by double slash \\. Let's see an example of a single
line comment in C.

#include<stdio.h>

int main()

{

 //printing information

 printf("Hello C");

return 0;

}
Output: Hello C

Even you can place the comment after the statement. For example:

printf("Hello C");//printing information

Multi Line Comments

Multi-Line comments are represented by slash asterisk * ... *\. It can occupy many lines of
code, but it can't be nested. Syntax:

/*

code

to be commented

*/

Let's see an example of a multi-Line comment in C.

#include<stdio.h>

int main()

{

 /*printing information

 Multi-Line Comment*/

 printf("Hello C");

return 0;

}
Output: Hello C

Escape Sequence in C

An escape sequence in C language is a sequence of characters that doesn't represent itself

when used inside string literal or character.

It is composed of two or more characters starting with backslash \. For example: \n
represents new line.

List of Escape Sequences in C

Escape Sequence Meaning

\a Alarm or Beep

\b Backspace

\f Form Feed

\n New Line

\r Carriage Return

\t Tab (Horizontal)

\v Vertical Tab

\\ Backslash

\' Single Quote

\" Double Quote

\? Question Mark

\nnn octal number

\xhh hexadecimal number

\0 Null

Escape Sequence Example

#include<stdio.h>

int main()

{

 int number=50;

 printf("You\nare\nlearning\n\'c\' language\n\"Do you know C language\"");

 return 0;

}
Output:

You

are

learning

'c' language

"Do you know C language"

Constants in C

A constant is a value or variable that can't be changed in the program, for example: 10, 20,

'a', 3.4, "c programming" etc.

There are different types of constants in C programming.

List of Constants in C

Constant Example

Decimal Constant 10, 20, 450 etc.

Real or Floating-point Constant 10.3, 20.2, 450.6 etc.

Octal Constant 021, 033, 046 etc.

Hexadecimal Constant 0x2a, 0x7b, 0xaa etc.

Character Constant 'a', 'b', 'x' etc.

String Constant "c", "c program", "c in vivek" etc.

2 ways to define constant in C

There are two ways to define constant in C programming.

1. const keyword

2. #define preprocessor

1) Const keyword

The const keyword is used to define constant in C programming.

const float PI=3.14;

Now, the value of PI variable can't be changed.

#include<stdio.h>

int main()

{

 const float PI=3.14;

 printf("The value of PI is: %f",PI);

 return 0;

}
Output:

The value of PI is: 3.140000

If you try to change the the value of PI, it will render compile time error.

#include<stdio.h>

int main()

{

const float PI=3.14;

PI=4.5;

printf("The value of PI is: %f",PI);

 return 0;

}
Output:

Compile Time Error: Cannot modify a const object

2) C #define preprocessor

The #define preprocessor is also used to define constant. We will learn about #define
preprocessor directive later.

C if else Statement

The if-else statement in C is used to perform the operations based on some specific

condition. The operations specified in if block are executed if and only if the given condition
is true.

There are the following variants of if statement in C language.

o If statement

o If-else statement

o If else-if ladder

o Nested if

If Statement

The if statement is used to check some given condition and perform some operations
depending upon the correctness of that condition. It is mostly used in the scenario where
we need to perform the different operations for the different conditions. The syntax of the if
statement is given below.

if(expression){

//code to be executed

}

Flowchart of if statement in C

Let's see a simple example of C language if statement.

#include<stdio.h>

int main()

{

int number=0;

printf("Enter a number:");

scanf("%d",&number);

if(number%2==0)

{

printf("%d is even number",number);

}

return 0;

}

Output
Enter a number:4

4 is even number

Program to find the largest number of the three.

#include <stdio.h>

int main()

{

 int a, b, c;

 printf("Enter three numbers?");

 scanf("%d %d %d",&a,&b,&c);

 if(a>b && a>c)

 {

 printf("%d is largest",a);

 }

 if(b>a && b > c)

 {

 printf("%d is largest",b);

 }

 if(c>a && c>b)

 {

 printf("%d is largest",c);

 }

 if(a == b && a == c)

 {

 printf("All are equal");

 }

}

Output
Enter three numbers?

12 23 34

34 is largest

If-else Statement

The if-else statement is used to perform two operations for a single condition. The if-else
statement is an extension to the if statement using which, we can perform two different
operations, i.e., one is for the correctness of that condition, and the other is for the
incorrectness of the condition. Here, we must notice that if and else block cannot be
executed simiulteneously. Using if-else statement is always preferable since it always
invokes an otherwise case with every if condition. The syntax of the if-else statement is
given below.

if(expression){

//code to be executed if condition is true

}else{

//code to be executed if condition is false

}

Flowchart of the if-else statement in C

Let's see the simple example to check whether a number is even or odd using if-else
statement in C language.

#include<stdio.h>

int main()

{

int number=0;

printf("enter a number:");

scanf("%d",&number);

if(number%2==0)

{

printf("%d is even number",number);

}

Else

{

printf("%d is odd number",number);

}

return 0;

}

Output

enter a number:4

4 is even number

enter a number:5

5 is odd number

Program to check whether a person is eligible to vote or not.

#include <stdio.h>

int main()

{

 int age;

 printf("Enter your age?");

 scanf("%d",&age);

 if(age>=18)

 {

 printf("You are eligible to vote...");

 }

 else

 {

 printf("Sorry ... you can't vote");

 }

}

Output

Enter your age?18

You are eligible to vote...

Enter your age?13

Sorry ... you can't vote

If else-if ladder Statement

The if-else-if ladder statement is an extension to the if-else statement. It is used in the
scenario where there are multiple cases to be performed for different conditions. In if-else-if
ladder statement, if a condition is true then the statements defined in the if block will be
executed, otherwise if some other condition is true then the statements defined in the else-
if block will be executed, at the last if none of the condition is true then the statements
defined in the else block will be executed. There are multiple else-if blocks possible. It is
similar to the switch case statement where the default is executed instead of else block if

none of the cases is matched.

if(condition1){

//code to be executed if condition1 is true

}else if(condition2){

//code to be executed if condition2 is true

}

else if(condition3){

//code to be executed if condition3 is true

}

...

else{

//code to be executed if all the conditions are false

}

Flowchart of else-if ladder statement in C

The example of an if-else-if statement in C language is given below.

#include<stdio.h>

int main()

{

int number=0;

printf("enter a number:");

scanf("%d",&number);

if(number==10)

{

printf("number is equals to 10");

}

else if(number==50)

{

printf("number is equal to 50");

}

else if(number==100)

{

printf("number is equal to 100");

}

else{

printf("number is not equal to 10, 50 or 100");

}

return 0;

}

Output
enter a number:4

number is not equal to 10, 50 or 100

enter a number:50

number is equal to 50

Program to calculate the grade of the student according to the specified marks.

#include <stdio.h>

int main()

{

 int marks;

 printf("Enter your marks?");

 scanf("%d",&marks);

 if(marks > 85 && marks <= 100)

 {

 printf("Congrats ! you scored grade A ...");

 }

 else if (marks > 60 && marks <= 85)

 {

 printf("You scored grade B + ...");

 }

 else if (marks > 40 && marks <= 60)

 {

 printf("You scored grade B ...");

 }

 else if (marks > 30 && marks <= 40)

 {

 printf("You scored grade C ...");

 }

 else

 {

 printf("Sorry you are fail ...");

 }

}

Output
Enter your marks?10

Sorry you are fail ...

Enter your marks?40

You scored grade C ...

Enter your marks?90

Congrats ! you scored grade A ...

C Switch Statement

The switch statement in C is an alternate to if-else-if ladder statement which allows us to

execute multiple operations for the different possible values of a single variable called
switch variable. Here, We can define various statements in the multiple cases for the
different values of a single variable.

The syntax of switch statement in c language is given below:

switch(expression)

{

case value1:

 //code to be executed;

 break; //optional

case value2:

 //code to be executed;

 break; //optional

......

default:

 code to be executed if all cases are not matched;

}

Rules for switch statement in C language

1) The switch expression must be of an integer or character type.

2) The case value must be an integer or character constant.

3) The case value can be used only inside the switch statement.

4) The break statement in switch case is not must. It is optional. If there is no break

statement found in the case, all the cases will be executed present after the matched case.
It is known as fall through the state of C switch statement.

Let's try to understand it by the examples. We are assuming that there are following
variables.

int x,y,z;

char a,b;

float f;

Valid Switch Invalid Switch Valid Case Invalid Case

switch(x) switch(f) case 3; case 2.5;

switch(x>y) switch(x+2.5) case 'a'; case x;

switch(a+b-2) case 1+2; case x+2;

switch(func(x,y)) case 'x'>'y'; case 1,2,3;

Flowchart of switch statement in C

Functioning of switch case statement

First, the integer expression specified in the switch statement is evaluated. This value is
then matched one by one with the constant values given in the different cases. If a match is

found, then all the statements specified in that case are executed along with the all the
cases present after that case including the default statement. No two cases can have similar
values. If the matched case contains a break statement, then all the cases present after
that will be skipped, and the control comes out of the switch. Otherwise, all the cases
following the matched case will be executed.

Let's see a simple example of c language switch statement.

#include<stdio.h>

int main()

{

int number=0;

printf("enter a number:");

scanf("%d",&number);

switch(number)

{

case 10:

printf("number is equals to 10");

break;

case 50:

printf("number is equal to 50");

break;

case 100:

printf("number is equal to 100");

break;

default:

printf("number is not equal to 10, 50 or 100");

}

return 0;

}

Output
enter a number:4

number is not equal to 10, 50 or 100

enter a number:50

number is equal to 50

Switch case example 2
#include <stdio.h>

int main()

{

 int x = 10, y = 5;

 switch(x>y && x+y>0)

 {

 case 1:

 printf("hi");

 break;

 case 0:

 printf("bye");

 break;

 default:

 printf(" Hello bye ");

 }

}
Output

hi

C Switch statement is fall-through

In C language, the switch statement is fall through; it means if you don't use a break
statement in the switch case, all the cases after the matching case will be executed.

Let's try to understand the fall through state of switch statement by the example given
below.

#include<stdio.h>

int main()

{

int number=0;

printf("enter a number:");

scanf("%d",&number);

switch(number)

{

case 10:

printf("number is equal to 10\n");

case 50:

printf("number is equal to 50\n");

case 100:

printf("number is equal to 100\n");

default:

printf("number is not equal to 10, 50 or 100");

}

return 0;

}

Output
enter a number:10

number is equal to 10

number is equal to 50

number is equal to 100

number is not equal to 10, 50 or 100

enter a number:50

number is equal to 50

number is equal to 100

number is not equal to 10, 50 or 100

Nested switch case statement

We can use as many switch statement as we want inside a switch statement. Such type of

statements is called nested switch case statements. Consider the following example.

#include <stdio.h>

int main ()

{

 int i = 10;

 int j = 20;

 switch(i)

 {

 case 10:

 printf("the value of i evaluated in outer switch: %d\n",i);

 case 20:

 switch(j)

 {

 case 20:

 printf("The value of j evaluated in nested switch: %d\n",j);

 }

 }

 printf("Exact value of i is : %d\n", i);

 printf("Exact value of j is : %d\n", j);

 return 0;

}

Output

the value of i evaluated in outer switch: 10

The value of j evaluated in nested switch: 20

Exact value of i is : 10

Exact value of j is : 20

C Loops

The looping can be defined as repeating the same process multiple times until a specific

condition satisfies. There are three types of loops used in the C language. In this part of the
tutorial, we are going to learn all the aspects of C loops.

Why use loops in C language?

The looping simplifies the complex problems into the easy ones. It enables us to alter the
flow of the program so that instead of writing the same code again and again, we can
repeat the same code for a finite number of times. For example, if we need to print the first
10 natural numbers then, instead of using the printf statement 10 times, we can print inside
a loop which runs up to 10 iterations.

Advantage of loops in C

1) It provides code reusability.

2) Using loops, we do not need to write the same code again and again.

2) Using loops, we can traverse over the elements of data structures (array or linked lists).

Types of C Loops

There are three types of loops in C language that is given below:

1. do while

2. while

3. for

do-while loop in C

The do-while loop continues until a given condition satisfies. It is also called post tested
loop. It is used when it is necessary to execute the loop at least once (mostly menu driven
programs).

The syntax of do-while loop in c language is given below:

do{

//code to be executed

}while(condition);

#include<stdio.h>

#include<stdlib.h>

void main ()

{

 char c;

 int choice,dummy;

 do{

 printf("\n1. Print Hello\n2. Print Vivek\n3. Exit\n");

 scanf("%d",&choice);

 switch(choice)

 {

 case 1 :

 printf("Hello");

 break;

 case 2:

 printf("Vivek");

 break;

 case 3:

 exit(0);

 break;

 default:

 printf("please enter valid choice");

 }

 printf("do you want to enter more?");

 scanf("%d",&dummy);

 scanf("%c",&c);

 }while(c=='y');

}

Output
1. Print Hello

2. Print Vivek

3. Exit

1

Hello

do you want to enter more?

y

1. Print Hello

2. Print Vivek

3. Exit

2

Vivek

do you want to enter more?

n

do while example

There is given the simple program of c language do while loop where we are printing the
table of 1.

#include<stdio.h>

int main()

{

int i=1;

do

 {

printf("%d \n",i);

i++;

}while(i<=10);

return 0;

}

Output
1

2

3

4

5

6

7

8

9

10

Program to print table for the given number using do while loop

#include<stdio.h>

int main()

{

int i=1,number=0;

printf("Enter a number: ");

scanf("%d",&number);

do

{

printf("%d \n",(number*i));

i++;

}while(i<=10);

return 0;

}

Output
Enter a number: 5

5

10

15

20

25

30

35

40

45

50

Infinitive do while loop

The do-while loop will run infinite times if we pass any non-zero value as the conditional

expression.

do{

//statement

}while(1);

while loop in C

The while loop in c is to be used in the scenario where we don't know the number of
iterations in advance. The block of statements is executed in the while loop until the
condition specified in the while loop is satisfied. It is also called a pre-tested loop.

The syntax of while loop in c language is given below:

while(condition){

//code to be executed

}

Flowchart of while loop in C

Example of the while loop in C language

Let's see the simple program of while loop that prints table of 1.

#include<stdio.h>

int main()

{

int i=1;

while(i<=10)

{

printf("%d \n",i);

i++;

}

return 0;

}

Output

1

2

3

4

5

6

7

8

9

10

Program to print table for the given number using while
loop in C

#include<stdio.h>

int main()

{

int i=1,number=0,b=9;

printf("Enter a number: ");

scanf("%d",&number);

while(i<=10)

{

printf("%d \n",(number*i));

i++;

}

return 0;

}

Output
Enter a number: 50

50

100

150

200

250

300

350

400

450

500

Properties of while loop

o A conditional expression is used to check the condition. The statements defined

inside the while loop will repeatedly execute until the given condition fails.

o The condition will be true if it returns 0. The condition will be false if it returns any

non-zero number.

o In while loop, the condition expression is compulsory.

o Running a while loop without a body is possible.

o We can have more than one conditional expression in while loop.

o If the loop body contains only one statement, then the braces are optional.

Example 1

#include<stdio.h>

void main ()

{

 int j = 1;

 while(j+=2,j<=10)

 {

 printf("%d ",j);

 }

 printf("%d",j);

}

Output
3 5 7 9 11

Example 2

#include<stdio.h>

void main ()

{

 while()

 {

 printf("hello Vivek");

 }

}

Output
compile time error: while loop can't be empty

Example 3

#include<stdio.h>

void main ()

{

 int x = 10, y = 2;

 while(x+y-1)

 {

 printf("%d %d",x--,y--);

 }

}

Output
infinite loop

Infinitive while loop in C

If the expression passed in while loop results in any non-zero value then the loop will run
the infinite number of times.

while(1){

//statement

}

for loop in C

The for loop in C language is used to iterate the statements or a part of the program

several times. It is frequently used to traverse the data structures like the array and linked
list.

Syntax of for loop in C

The syntax of for loop in c language is given below:

for(Expression 1; Expression 2; Expression 3){

//code to be executed

}

Flowchart of for loop in C

C for loop Examples

Let's see the simple program of for loop that prints table of 1.

#include<stdio.h>

int main()

{

int i=0;

for(i=1;i<=10;i++){

printf("%d \n",i);

}

return 0;

}

Output
1

2

3

4

5

6

7

8

9

10

C Program: Print table for the given number using C for
loop

#include<stdio.h>

int main()

{

int i=1,number=0;

printf("Enter a number: ");

scanf("%d",&number);

for(i=1;i<=10;i++){

printf("%d \n",(number*i));

}

return 0;

}

Output
Enter a number: 2

2

4

6

8

10

12

14

16

18

20

Properties of Expression 1

o The expression represents the initialization of the loop variable.

o We can initialize more than one variable in Expression 1.

o Expression 1 is optional.

o In C, we can not declare the variables in Expression 1. However, It can be an

exception in some compilers.

Example 1

#include <stdio.h>

int main()

{

 int a,b,c;

 for(a=0,b=12,c=23;a<2;a++)

 {

 printf("%d ",a+b+c);

 }

}

Output
35 36

Example 2

#include <stdio.h>

int main()

{

 int i=1;

 for(;i<5;i++)

 {

 printf("%d ",i);

 }

}

Output
1 2 3 4

Properties of Expression 2

o Expression 2 is a conditional expression. It checks for a specific condition to be

satisfied. If it is not, the loop is terminated.

o Expression 2 can have more than one condition. However, the loop will iterate until

the last condition becomes false. Other conditions will be treated as statements.

o Expression 2 is optional.

o Expression 2 can perform the task of expression 1 and expression 3. That is, we can

initialize the variable as well as update the loop variable in expression 2 itself.

o We can pass zero or non-zero value in expression 2. However, in C, any non-zero

value is true, and zero is false by default.

Example 1

#include <stdio.h>

int main()

{

 int i;

 for(i=0;i<=4;i++)

 {

 printf("%d ",i);

 }

}

Output
0 1 2 3 4

Example 2

#include <stdio.h>

int main()

{

 int i,j,k;

 for(i=0,j=0,k=0;i<4,k<8,j<10;i++)

 {

 printf("%d %d %d\n",i,j,k);

 j+=2;

 k+=3;

 }

}

Output
0 0 0

1 2 3

2 4 6

3 6 9

4 8 12

Example 3

#include <stdio.h>

int main()

{

 int i;

 for(i=0;;i++)

 {

 printf("%d",i);

 }

}

Output
infinite loop

Properties of Expression 3

o Expression 3 is used to update the loop variable.

o We can update more than one variable at the same time.

o Expression 3 is optional.

Example 1

#include<stdio.h>

void main ()

{

 int i=0,j=2;

 for(i = 0;i<5;i++,j=j+2)

 {

 printf("%d %d\n",i,j);

 }

}

Output
0 2

1 4

2 6

3 8

4 10

Loop body

The braces {} are used to define the scope of the loop. However, if the loop contains only
one statement, then we don't need to use braces. A loop without a body is possible. The
braces work as a block separator, i.e., the value variable declared inside for loop is valid

only for that block and not outside. Consider the following example.

#include<stdio.h>

void main ()

{

 int i;

 for(i=0;i<10;i++)

 {

 int i = 20;

 printf("%d ",i);

 }

}
20 20 20 20 20 20 20 20 20 20

Infinitive for loop in C

To make a for loop infinite, we need not give any expression in the syntax. Instead of that,
we need to provide two semicolons to validate the syntax of the for loop. This will work as
an infinite for loop.

#include<stdio.h>

void main ()

{

 for(;;)

 {

 printf("welcome to vivek");

 }

}

If you run this program, you will see above statement infinite times.

C break statement

The break is a keyword in C which is used to bring the program control out of the loop. The

break statement is used inside loops or switch statement. The break statement breaks the
loop one by one, i.e., in the case of nested loops, it breaks the inner loop first and then
proceeds to outer loops. The break statement in C can be used in the following two
scenarios:

1. With switch case

2. With loop

Syntax:

//loop or switch case

break;

Flowchart of break in c

Example

#include<stdio.h>

#include<stdlib.h>

void main ()

{

 int i;

 for(i = 0; i<10; i++)

 {

 printf("%d ",i);

 if(i == 5)

 break;

 }

 printf("came outside of loop i = %d",i);

}

Output
0 1 2 3 4 5 came outside of loop i = 5

C break statement with the nested loop

In such case, it breaks only the inner loop, but not outer loop.

#include<stdio.h>

int main()

{

int i=1,j=1;//initializing a local variable

for(i=1;i<=3;i++)

{

for(j=1;j<=3;j++)

{

printf("%d &d\n",i,j);

if(i==2 && j==2){

break;//will break loop of j only

}

}//end of for loop

 }

return 0;

}

Output
1 1

1 2

1 3

2 1

2 2

3 1

3 2

3 3

As you can see the output on the console, 2 3 is not printed because there is a break

statement after printing i==2 and j==2. But 3 1, 3 2 and 3 3 are printed because the break

statement is used to break the inner loop only.

break statement with while loop

Consider the following example to use break statement inside while loop.

#include<stdio.h>

void main ()

{

 int i = 0;

 while(1)

 {

 printf("%d ",i);

 i++;

 if(i == 10)

 break;

 }

 printf("came out of while loop");

}

Output

0 1 2 3 4 5 6 7 8 9 came out of while loop

break statement with do-while loop

Consider the following example to use the break statement with a do-while loop.

#include<stdio.h>

void main ()

{

 int n=2,i,choice;

 do

 {

 i=1;

 while(i<=10)

 {

 printf("%d X %d = %d\n",n,i,n*i);

 i++;

 }

 printf("do you want to continue with the table of %d , enter any nonzero value to continu

e.",n+1);

 scanf("%d",&choice);

 if(choice == 0)

 {

 break;

 }

 n++;

 }while(1);

}

Output

2 X 1 = 2

2 X 2 = 4

2 X 3 = 6

2 X 4 = 8

2 X 5 = 10

2 X 6 = 12

2 X 7 = 14

2 X 8 = 16

2 X 9 = 18

2 X 10 = 20

do you want to continue with the table of 3 , enter any non-zero value to

continue.1

3 X 1 = 3

3 X 2 = 6

3 X 3 = 9

3 X 4 = 12

3 X 5 = 15

3 X 6 = 18

3 X 7 = 21

3 X 8 = 24

3 X 9 = 27

3 X 10 = 30

do you want to continue with the table of 4 , enter any non-zero value to

continue.0

C continue statement

The continue statement in C language is used to bring the program control to the

beginning of the loop. The continue statement skips some lines of code inside the loop and
continues with the next iteration. It is mainly used for a condition so that we can skip some
code for a particular condition.

Syntax:

//loop statements

continue;

//some lines of the code which is to be skipped

Continue statement example 1

#include<stdio.h>

void main ()

{

 int i = 0;

 while(i!=10)

 {

 printf("%d", i);

 continue;

 i++;

 }

}

Output
infinite loop

Continue statement example 2

#include<stdio.h>

int main()

{

int i=1;//initializing a local variable

//starting a loop from 1 to 10

for(i=1;i<=10;i++)

{

if(i==5){//if value of i is equal to 5, it will continue the loop

continue;

 }

printf("%d \n",i);

}//end of for loop

return 0;

}

Output
1

2

3

4

6

7

8

9

10

As you can see, 5 is not printed on the console because loop is continued at i==5.

C continue statement with inner loop

In such case, C continue statement continues only inner loop, but not outer loop.

#include<stdio.h>

int main()

{

int i=1,j=1;//initializing a local variable

for(i=1;i<=3;i++)

{

for(j=1;j<=3;j++)

{

if(i==2 && j==2){

continue;//will continue loop of j only

}

printf("%d %d\n",i,j);

}

}//end of for loop

return 0;

}

Output
1 1

1 2

1 3

2 1

2 3

3 1

3 2

3 3

As you can see, 2 2 is not printed on the console because inner loop is continued at i==2

and j==2.

C goto statement

The goto statement is known as jump statement in C. As the name suggests, goto is used

to transfer the program control to a predefined label. The goto statment can be used to
repeat some part of the code for a particular condition. It can also be used to break the
multiple loops which can't be done by using a single break statement. However, using goto
is avoided these days since it makes the program less readable and complecated.

Syntax:

label:

//some part of the code;

goto label;

goto example

Let's see a simple example to use goto statement in C language.

#include <stdio.h>

int main()

{

 int num,i=1;

 printf("Enter the number whose table you want to print?");

 scanf("%d",&num);

 table:

 printf("%d x %d = %d\n",num,i,num*i);

 i++;

 if(i<=10)

 goto table;

}

Output
Enter the number whose table you want to print?10

10 x 1 = 10

10 x 2 = 20

10 x 3 = 30

10 x 4 = 40

10 x 5 = 50

10 x 6 = 60

10 x 7 = 70

10 x 8 = 80

10 x 9 = 90

10 x 10 = 100

When should we use goto?

The only condition in which using goto is preferable is when we need to break the multiple

loops using a single statement at the same time. Consider the following example.

#include <stdio.h>

int main()

{

 int i, j, k;

 for(i=0;i<10;i++)

 {

 for(j=0;j<5;j++)

 {

 for(k=0;k<3;k++)

 {

 printf("%d %d %d\n",i,j,k);

 if(j == 3)

 {

 goto out;

 }

 }

 }

 }

 out:

 printf("came out of the loop");

}

0 0 0

0 0 1

0 0 2

0 1 0

0 1 1

0 1 2

0 2 0

0 2 1

0 2 2

0 3 0

came out of the loop

Type Casting in C

Typecasting allows us to convert one data type into other. In C language, we use cast

operator for typecasting which is denoted by (type).

Syntax:

(type)value;

Note: It is always recommended to convert the lower value to higher for avoiding data loss.

Without Type Casting:

int f= 9/4;

printf("f : %d\n", f);//Output: 2

With Type Casting:

float f=(float) 9/4;

printf("f : %f\n", f);//Output: 2.250000

Type Casting example

Let's see a simple example to cast int value into the float.

#include<stdio.h>

int main()

{

float f= (float)9/4;

printf("f : %f\n", f);

return 0;

}

Output:

f : 2.250000

C Functions

In c, we can divide a large program into the basic building blocks known as function. The

function contains the set of programming statements enclosed by {}. A function can be
called multiple times to provide reusability and modularity to the C program. In other
words, we can say that the collection of functions creates a program. The function is also
known as procedure or subroutine in other programming languages.

Advantage of functions in C

There are the following advantages of C functions.

o By using functions, we can avoid rewriting same logic/code again and again in a

program.

o We can call C functions any number of times in a program and from any place in a

program.

o We can track a large C program easily when it is divided into multiple functions.

o Reusability is the main achievement of C functions.

o However, Function calling is always a overhead in a C program.

Function Aspects

There are three aspects of a C function.

o Function declaration A function must be declared globally in a c program to tell the

compiler about the function name, function parameters, and return type.

o Function call Function can be called from anywhere in the program. The parameter

list must not differ in function calling and function declaration. We must pass the

same number of functions as it is declared in the function declaration.

o Function definition It contains the actual statements which are to be executed. It

is the most important aspect to which the control comes when the function is called.

Here, we must notice that only one value can be returned from the function.

SN C function aspects Syntax

1 Function declaration return_type function_name (argument list);

2 Function call function_name (argument_list)

3 Function definition return_type function_name (argument list) {function body;}

The syntax of creating function in c language is given below:

return_type function_name(data_type parameter...){

//code to be executed

}

Types of Functions

There are two types of functions in C programming:

1. Library Functions: are the functions which are declared in the C header files such

as scanf(), printf(), gets(), puts(), ceil(), floor() etc.

2. User-defined functions: are the functions which are created by the C programmer,

so that he/she can use it many times. It reduces the complexity of a big program

and optimizes the code.

Return Value

A C function may or may not return a value from the function. If you don't have to return
any value from the function, use void for the return type.

Let's see a simple example of C function that doesn't return any value from the function.

Example without return value:

void hello(){

printf("hello c");

}

If you want to return any value from the function, you need to use any data type such as
int, long, char, etc. The return type depends on the value to be returned from the function.

Let's see a simple example of C function that returns int value from the function.

Example with return value:

int get(){

return 10;

}

In the above example, we have to return 10 as a value, so the return type is int. If you want to

return floating-point value (e.g., 10.2, 3.1, 54.5, etc), you need to use float as the return type of

the method.

float get(){

return 10.2;

}

Now, you need to call the function, to get the value of the function.

Different aspects of function calling

A function may or may not accept any argument. It may or may not return any value.
Based on these facts, There are four different aspects of function calls.

o function without arguments and without return value

o function without arguments and with return value

o function with arguments and without return value

o function with arguments and with return value

Example for Function without argument and return value

Example 1

#include<stdio.h>

void printName();

void main ()

{

 printf("Hello ");

 printName();

}

void printName()

{

 printf("Vivek");

}

Output Hello Vivek

Example 2

#include<stdio.h>

void sum();

void main()

{

 printf("\nGoing to calculate the sum of two numbers:");

 sum();

}

void sum()

{

 int a,b;

 printf("\nEnter two numbers");

 scanf("%d %d",&a,&b);

 printf("The sum is %d",a+b);

}

Output Going to calculate the sum of two numbers:

Enter two numbers 10

24

The sum is 34

Example for Function without argument and with return value

Example 1

#include<stdio.h>

int sum();

void main()

{

 int result;

 printf("\nGoing to calculate the sum of two numbers:");

 result = sum();

 printf("%d",result);

}

int sum()

{

 int a,b;

 printf("\nEnter two numbers");

 scanf("%d %d",&a,&b);

 return a+b;

}

Example 2: program to calculate the area of the square

#include<stdio.h>

int sum();

void main()

{

 printf("Going to calculate the area of the square\n");

 float area = square();

 printf("The area of the square: %f\n",area);

}

int square()

{

 float side;

 printf("Enter the length of the side in meters: ");

 scanf("%f",&side);

 return side * side;

}

Output

Going to calculate the area of the square

Enter the length of the side in meters: 10

The area of the square: 100.000000

Example for Function with argument and without return value

Example 1

#include<stdio.h>

void sum(int, int);

void main()

{

 int a,b,result;

 printf("\nGoing to calculate the sum of two numbers:");

 printf("\nEnter two numbers:");

 scanf("%d %d",&a,&b);

 sum(a,b);

}

void sum(int a, int b)

{

 printf("\nThe sum is %d",a+b);

}

Output

Going to calculate the sum of two numbers:

Enter two numbers 10

24

The sum is 34

Example 2: program to calculate the average of five numbers.

#include<stdio.h>

void average(int, int, int, int, int);

void main()

{

 int a,b,c,d,e;

 printf("\nGoing to calculate the average of five numbers:");

 printf("\nEnter five numbers:");

 scanf("%d %d %d %d %d",&a,&b,&c,&d,&e);

 average(a,b,c,d,e);

}

void average(int a, int b, int c, int d, int e)

{

 float avg;

 avg = (a+b+c+d+e)/5;

 printf("The average of given five numbers : %f",avg);

}

Output

Going to calculate the average of five numbers:

Enter five numbers:10

20

30

40

50

The average of given five numbers : 30.000000

Example for Function with argument and with return value

Example 1

#include<stdio.h>

int sum(int, int);

void main()

{

 int a,b,result;

 printf("\nGoing to calculate the sum of two numbers:");

 printf("\nEnter two numbers:");

 scanf("%d %d",&a,&b);

 result = sum(a,b);

 printf("\nThe sum is : %d",result);

}

int sum(int a, int b)

{

 return a+b;

}

Output

Going to calculate the sum of two numbers:

Enter two numbers:10

20

The sum is : 30

Example 2: Program to check whether a number is even or odd

#include<stdio.h>

int even_odd(int);

void main()

{

 int n,flag=0;

 printf("\nGoing to check whether a number is even or odd");

 printf("\nEnter the number: ");

 scanf("%d",&n);

 flag = even_odd(n);

 if(flag == 0)

 {

 printf("\nThe number is odd");

 }

 else

 {

 printf("\nThe number is even");

 }

}

int even_odd(int n)

{

 if(n%2 == 0)

 {

 return 1;

 }

 else

 {

 return 0;

 }

}

Output

Going to check whether a number is even or odd

Enter the number: 100

The number is even

C Library Functions

Library functions are the inbuilt function in C that are grouped and placed at a common

place called the library. Such functions are used to perform some specific operations. For
example, printf is a library function used to print on the console. The library functions are
created by the designers of compilers. All C standard library functions are defined inside the
different header files saved with the extension .h. We need to include these header files in
our program to make use of the library functions defined in such header files. For example,
To use the library functions such as printf/scanf we need to include stdio.h in our program
which is a header file that contains all the library functions regarding standard input/output.

The list of mostly used header files is given in the following table.

 Header

file

Description

1 stdio.h This is a standard input/output header file. It contains all the library functions regarding standard

input/output.

2 conio.h This is a console input/output header file.

3 string.h It contains all string related library functions like gets(), puts(),etc.

4 stdlib.h This header file contains all the general library functions like malloc(), calloc(), exit(), etc.

5 math.h This header file contains all the math operations related functions like sqrt(), pow(), etc.

6 time.h This header file contains all the time-related functions.

7 ctype.h This header file contains all character handling functions.

8 stdarg.h Variable argument functions are defined in this header file.

9 signal.h All the signal handling functions are defined in this header file.

1

0

setjmp.h This file contains all the jump functions.

1

1

locale.h This file contains locale functions.

1 errno.h This file contains error handling functions.

2

1

3

assert.h This file contains diagnostics functions.

Call by value and Call by reference in C

There are two methods to pass the data into the function in C language, i.e., call by

value and call by reference.

Let's understand call by value and call by reference in c language one by one.

Call by value in C

o In call by value method, the value of the actual parameters is copied into the formal

parameters. In other words, we can say that the value of the variable is used in the

function call in the call by value method.

o In call by value method, we can not modify the value of the actual parameter by the

formal parameter.

o In call by value, different memory is allocated for actual and formal parameters since

the value of the actual parameter is copied into the formal parameter.

o The actual parameter is the argument which is used in the function call whereas

formal parameter is the argument which is used in the function definition.

Let's try to understand the concept of call by value in c language by the example given
below:

#include<stdio.h>

void change(int num) {

 printf("Before adding value inside function num=%d \n",num);

 num=num+100;

 printf("After adding value inside function num=%d \n", num);

}

int main() {

 int x=100;

 printf("Before function call x=%d \n", x);

 change(x);//passing value in function

 printf("After function call x=%d \n", x);

return 0;

}

Output
Before function call x=100

Before adding value inside function num=100

After adding value inside function num=200

After function call x=100

Call by Value Example: Swapping the values of the two variables

#include <stdio.h>

void swap(int , int); //prototype of the function

int main()

{

 int a = 10;

 int b = 20;

 printf("Before swapping the values in main a = %d, b = %d\n",a,b); // printing the value

 of a and b in main

swap(a,b);

printf("After swapping values in main a = %d, b = %d\n",a,b); // The value of actual paa

meters do not change by changing the formal parameters in call by value, a = 10, b = 2

}

void swap (int a, int b)

{

 int temp;

 temp = a;

 a=b;

 b=temp;

 printf("After swapping values in function a = %d, b = %d\n",a,b); // Formal parameters,

a = 20, b = 10

}

Output
Before swapping the values in main a = 10, b = 20

After swapping values in function a = 20, b = 10

After swapping values in main a = 10, b = 20

Call by reference in C

o In call by reference, the address of the variable is passed into the function call as the

actual parameter.

o The value of the actual parameters can be modified by changing the formal

parameters since the address of the actual parameters is passed.

o In call by reference, the memory allocation is similar for both formal parameters and

actual parameters. All the operations in the function are performed on the value

stored at the address of the actual parameters, and the modified value gets stored at

the same address.Consider the following example for the call by reference.

#include<stdio.h>

void change(int *num) {

 printf("Before adding value inside function num=%d \n",*num);

 (*num) += 100;

 printf("After adding value inside function num=%d \n", *num);

}

int main() {

 int x=100;

 printf("Before function call x=%d \n", x);

 change(&x);//passing reference in function

 printf("After function call x=%d \n", x);

return 0;

}

Output
Before function call x=100

Before adding value inside function num=100

After adding value inside function num=200

After function call x=200

Call by reference Example: Swapping the values of the two variables

#include <stdio.h>

void swap(int *, int *); //prototype of the function

int main()

{

 int a = 10;

 int b = 20;

 printf("Before swapping the values in main a = %d, b = %d\n",a,b); // printing the value

 of a and b in main

 swap(&a,&b);

 printf("After swapping values in main a = %d, b = %d\n",a,b); // The values of actual pa

rameters do change in call by reference, a = 10, b = 20

}

void swap (int *a, int *b)

{

 int temp;

 temp = *a;

 *a=*b;

 *b=temp;

 printf("After swapping values in function a = %d, b = %d\n",*a,*b); // Formal paramete

rs, a = 20, b = 10

}

Output
Before swapping the values in main a = 10, b = 20

After swapping values in function a = 20, b = 10

After swapping values in main a = 20, b = 10

Difference between call by value and call by reference
in C

No. Call by value Call by reference

1 A copy of the value is passed
into the function

An address of value is passed into the
function

2 Changes made inside the
function is limited to the function
only. The values of the actual
parameters do not change by
changing the formal parameters.

Changes made inside the function
validate outside of the function also.
The values of the actual parameters do
change by changing the formal
parameters.

3 Actual and formal arguments are
created at the different memory
location

Actual and formal arguments are
created at the same memory location

Recursion in C

Recursion is the process which comes into existence when a function calls a copy of itself to

work on a smaller problem. Any function which calls itself is called recursive function, and
such function calls are called recursive calls. Recursion involves several numbers of
recursive calls. However, it is important to impose a termination condition of recursion.
Recursion code is shorter than iterative code however it is difficult to understand.

Recursion cannot be applied to all the problem, but it is more useful for the tasks that can

be defined in terms of similar subtasks. For Example, recursion may be applied to sorting,
searching, and traversal problems.

Generally, iterative solutions are more efficient than recursion since function call is always
overhead. Any problem that can be solved recursively, can also be solved iteratively.
However, some problems are best suited to be solved by the recursion, for example, tower
of Hanoi, Fibonacci series, factorial finding, etc.

In the following example, recursion is used to calculate the factorial of a number.

#include <stdio.h>

int fact (int);

int main()

{

 int n,f;

 printf("Enter the number whose factorial you want to calculate?");

 scanf("%d",&n);

 f = fact(n);

 printf("factorial = %d",f);

}

int fact(int n)

{

 if (n==0)

 {

 return 0;

 }

 else if (n == 1)

 {

 return 1;

 }

 else

 {

 return n*fact(n-1);

 }

}

Output
Enter the number whose factorial you want to calculate?5

factorial = 120

We can understand the above program of the recursive method call by the method given
below:

Recursive Function

A recursive function performs the tasks by dividing it into the subtasks. There is a
termination condition defined in the function which is satisfied by some specific subtask.
After this, the recursion stops and the final result is returned from the function.

The case at which the function doesn't recur is called the base case whereas the instances

where the function keeps calling itself to perform a subtask, is called the recursive case. All
the recursive functions can be written using this format.

Pseudocode for writing any recursive function is given below.

if (test_for_base)

{

 return some_value;

}

else if (test_for_another_base)

{

 return some_another_value;

}

else

{

 // Statements;

 recursive call;

}

Example of recursion in C

#include<stdio.h>

int fibonacci(int);

void main ()

{

 int n,f;

 printf("Enter the value of n?");

 scanf("%d",&n);

 f = fibonacci(n);

 printf("%d",f);

}

int fibonacci (int n)

{

 if (n==0)

 {

 return 0;

 }

 else if (n == 1)

 {

 return 1;

 }

 else

 {

 return fibonacci(n-1)+fibonacci(n-2);

 }

}
Enter the value of n?12

144

Memory allocation of Recursive method

Each recursive call creates a new copy of that method in the memory. Once some data is returned

by the method, the copy is removed from the memory. Since all the variables and other stuff

declared inside function get stored in the stack, therefore a separate stack is maintained at each

recursive call. Once the value is returned from the corresponding function, the stack gets

destroyed. Recursion involves so much complexity in resolving and tracking the values at each

recursive call. Therefore we need to maintain the stack and track the values of the variables

defined in the stack.

Let us consider the following example to understand the memory allocation of the recursive

functions.

int display (int n)

{

 if(n == 0)

 return 0; // terminating condition

 else

 {

 printf("%d",n);

 return display(n-1); // recursive call

 }

}

Explanation

Let us examine this recursive function for n = 4. First, all the stacks are maintained which
prints the corresponding value of n until n becomes 0, Once the termination condition is
reached, the stacks get destroyed one by one by returning 0 to its calling stack. Consider
the following image for more information regarding the stack trace for the recursive
functions.

Storage Classes in C

Storage classes in C are used to determine the lifetime, visibility, memory location, and

initial value of a variable. There are four types of storage classes in C

o Automatic

o External

o Static

o Register

Storage

Classes

Storage

Place

Default Value Scope Lifetime

Auto RAM Garbage Value Local Within function

Extern RAM Zero Global Till the end of the main program
Maybe declared anywhere in the
program

Static RAM Zero Local Till the end of the main program,
Retains value between multiple
functions call

Register Register Garbage Value Local Within the function

Automatic

o Automatic variables are allocated memory automatically at runtime.

o The visibility of the automatic variables is limited to the block in which they are

defined.

The scope of the automatic variables is limited to the block in which they are
defined.

o The automatic variables are initialized to garbage by default.

o The memory assigned to automatic variables gets freed upon exiting from the block.

o The keyword used for defining automatic variables is auto.

o Every local variable is automatic in C by default.

Example 1

#include <stdio.h>

int main()

{

int a; //auto

char b;

float c;

printf("%d %c %f",a,b,c); // printing initial default value of automatic variables a, b, and c.

return 0;

}

Output:

garbage garbage garbage

Example 2

#include <stdio.h>

int main()

{

int a = 10,i;

printf("%d ",++a);

{

int a = 20;

for (i=0;i<3;i++)

{

printf("%d ",a); // 20 will be printed 3 times since it is the local value of a

}

}

printf("%d ",a); // 11 will be printed since the scope of a = 20 is ended.

}

Output:

11 20 20 20 11

Static

o The variables defined as static specifier can hold their value between the multiple

function calls.

o Static local variables are visible only to the function or the block in which they are

defined.

o A same static variable can be declared many times but can be assigned at only one

time.

o Default initial value of the static integral variable is 0 otherwise null.

o The visibility of the static global variable is limited to the file in which it has declared.

o The keyword used to define static variable is static.

Example 1

#include<stdio.h>

static char c;

static int i;

static float f;

static char s[100];

void main ()

{

printf("%d %d %f %s",c,i,f); // the initial default value of c, i, and f will be printed.

}

Output:
0 0 0.000000 (null)

Example 2

#include<stdio.h>

void sum()

{

static int a = 10;

static int b = 24;

printf("%d %d \n",a,b);

a++;

b++;

}

void main()

{

int i;

for(i = 0; i< 3; i++)

{

sum(); // The static variables holds their value between multiple function calls.

}

}

Output:
10 24

11 25

12 26

Register

o The variables defined as the register is allocated the memory into the CPU registers

depending upon the size of the memory remaining in the CPU.

o We can not dereference the register variables, i.e., we can not use &operator for the

register variable.

o The access time of the register variables is faster than the automatic variables.

o The initial default value of the register local variables is 0.

o The register keyword is used for the variable which should be stored in the CPU

register. However, it is compiler?s choice whether or not; the variables can be stored

in the register.

o We can store pointers into the register, i.e., a register can store the address of a

variable.

o Static variables can not be stored into the register since we can not use more than

one storage specifier for the same variable.

Example 1

#include <stdio.h>

int main()

{

register int a; // variable a is allocated memory in the CPU register. The initial default vale

of a is 0.

printf("%d",a);

}

Output:
0

Example 2

#include <stdio.h>

int main()

{

register int a = 0;

printf("%u",&a); // This will give a compile time error since we can not access the address o

f a register variable.

}

Output:

main.c:5:5: error: address of register variable ?a? requested

printf("%u",&a);

^~~~~~

External

o The external storage class is used to tell the compiler that the variable defined as

extern is declared with an external linkage elsewhere in the program.

o The variables declared as extern are not allocated any memory. It is only declaration

and intended to specify that the variable is declared elsewhere in the program.

o The default initial value of external integral type is 0 otherwise null.

o We can only initialize the extern variable globally, i.e., we can not initialize the

external variable within any block or method.

o An external variable can be declared many times but can be initialized at only once.

o If a variable is declared as external then the compiler searches for that variable to be

initialized somewhere in the program which may be extern or static. If it is not, then

the compiler will show an error.

Example 1

#include <stdio.h>

int main()

{

extern int a;

printf("%d",a);

}

Output
main.c:(.text+0x6): undefined reference to `a'

collect2: error: ld returned 1 exit status

Example 2

#include <stdio.h>

int a;

int main()

{

extern int a; // variable a is defined globally, the memory will not be allocated to a

printf("%d",a);

}
Output
0

Example 3

#include <stdio.h>

int a;

int main()

{

extern int a = 0; // this will show a compiler error since we can not use extern and initializ

er at same time

printf("%d",a);

}

Output
compile time error

main.c: In function ?main?:

main.c:5:16: error: ?a? has both ?extern? and initializer

extern int a = 0;

Example 4

#include <stdio.h>

int main()

{

extern int a; // Compiler will search here for a variable a defined and initialized somewhere

 in the pogram or not.

printf("%d",a);

int a = 20;

Output

20

Example 5

extern int a;

int a = 10;

#include <stdio.h>

int main()

{

printf("%d",a);

}

int a = 20; // compiler will show an error at this line

Output

compile time error

C Array

An array is defined as the collection of similar type of data items stored at contiguous

memory locations. Arrays are the derived data type in C programming language which can
store the primitive type of data such as int, char, double, float, etc. It also has the capability
to store the collection of derived data types, such as pointers, structure, etc. The array is
the simplest data structure where each data element can be randomly accessed by using its
index number.

C array is beneficial if you have to store similar elements. For example, if we want to store
the marks of a student in 6 subjects, then we don't need to define different variables for the
marks in the different subject. Instead of that, we can define an array which can store the
marks in each subject at the contiguous memory locations.

By using the array, we can access the elements easily. Only a few lines of code are required
to access the elements of the array.

Properties of Array

The array contains the following properties.

o Each element of an array is of same data type and carries the same size, i.e., int = 4

bytes.

o Elements of the array are stored at contiguous memory locations where the first

element is stored at the smallest memory location.

o Elements of the array can be randomly accessed since we can calculate the address

of each element of the array with the given base address and the size of the data

element.

Advantage of C Array

1) Code Optimization: Less code to the access the data.

2) Ease of traversing: By using the for loop, we can retrieve the elements of an array
easily.

3) Ease of sorting: To sort the elements of the array, we need a few lines of code only.

4) Random Access: We can access any element randomly using the array.

Disadvantage of C Array

1) Fixed Size: Whatever size, we define at the time of declaration of the array, we can't
exceed the limit. So, it doesn't grow the size dynamically like LinkedList which we will learn
later.

Declaration of C Array

We can declare an array in the c language in the following way.

data_type array_name[array_size];

Now, let us see the example to declare the array.

int marks[5];

Here, int is the data_type, marks are the array_name, and 5 is the array_size.

Initialization of C Array

The simplest way to initialize an array is by using the index of each element. We can

initialize each element of the array by using the index. Consider the following example.

marks[0]=80;//initialization of array

marks[1]=60;

marks[2]=70;

marks[3]=85;

marks[4]=75;

C array example

#include<stdio.h>

int main(){

int i=0;

int marks[5];//declaration of array

marks[0]=80;//initialization of array

marks[1]=60;

marks[2]=70;

marks[3]=85;

marks[4]=75;

//traversal of array

for(i=0;i<5;i++){

printf("%d \n",marks[i]);

}//end of for loop

return 0;

}

Output
80

60

70

85

75

C Array: Declaration with Initialization

We can initialize the c array at the time of declaration. Let's see the code.

int marks[5]={20,30,40,50,60};

In such case, there is no requirement to define the size. So it may also be written as the

following code.

int marks[]={20,30,40,50,60};

Let's see the C program to declare and initialize the array in C.

#include<stdio.h>

int main(){

int i=0;

int marks[5]={20,30,40,50,60};//declaration and initialization of array

 //traversal of array

for(i=0;i<5;i++){

printf("%d \n",marks[i]);

}

return 0;

}

Output
20

30

40

50

60

C Array Example: Sorting an array

In the following program, we are using bubble sort method to sort the array in ascending

order.

#include<stdio.h>

void main ()

{

 int i, j,temp;

 int a[10] = { 10, 9, 7, 101, 23, 44, 12, 78, 34, 23};

 for(i = 0; i<10; i++)

 {

 for(j = i+1; j<10; j++)

 {

 if(a[j] > a[i])

 {

 temp = a[i];

 a[i] = a[j];

 a[j] = temp;

 }

 }

 }

 printf("Printing Sorted Element List ...\n");

 for(i = 0; i<10; i++)

 {

 printf("%d\n",a[i]);

 }

}

Program to print the largest and second largest
element of the array.

#include<stdio.h>

void main ()

{

 int arr[100],i,n,largest,sec_largest;

 printf("Enter the size of the array?");

 scanf("%d",&n);

 printf("Enter the elements of the array?");

 for(i = 0; i<n; i++)

 {

 scanf("%d",&arr[i]);

 }

 largest = arr[0];

 sec_largest = arr[1];

 for(i=0;i<n;i++)

 {

 if(arr[i]>largest)

 {

 sec_largest = largest;

 largest = arr[i];

 }

 else if (arr[i]>sec_largest && arr[i]!=largest)

 {

 sec_largest=arr[i];

 }

 }

 printf("largest = %d, second largest = %d",largest,sec_largest);

}

Two Dimensional Array in C

The two-dimensional array can be defined as an array of arrays. The 2D array is organized

as matrices which can be represented as the collection of rows and columns. However, 2D
arrays are created to implement a relational database lookalike data structure. It provides
ease of holding the bulk of data at once which can be passed to any number of functions
wherever required.

Declaration of two dimensional Array in C

The syntax to declare the 2D array is given below.

data_type array_name[rows][columns];

Consider the following example.

int twodimen[4][3];

Here, 4 is the number of rows, and 3 is the number of columns.

Initialization of 2D Array in C

In the 1D array, we don't need to specify the size of the array if the declaration and
initialization are being done simultaneously. However, this will not work with 2D arrays. We
will have to define at least the second dimension of the array. The two-dimensional array
can be declared and defined in the following way.

int arr[4][3]={{1,2,3},{2,3,4},{3,4,5},{4,5,6}};

Two-dimensional array example in C

#include<stdio.h>

int main(){

int i=0,j=0;

int arr[4][3]={{1,2,3},{2,3,4},{3,4,5},{4,5,6}};

//traversing 2D array

for(i=0;i<4;i++){

 for(j=0;j<3;j++){

 printf("arr[%d] [%d] = %d \n",i,j,arr[i][j]);

 }//end of j

}//end of i

return 0;

}

Output
arr[0][0] = 1

arr[0][1] = 2

arr[0][2] = 3

arr[1][0] = 2

arr[1][1] = 3

arr[1][2] = 4

arr[2][0] = 3

arr[2][1] = 4

arr[2][2] = 5

arr[3][0] = 4

arr[3][1] = 5

arr[3][2] = 6

C 2D array example: Storing elements in a matrix and
printing it.

#include <stdio.h>

void main ()

{

 int arr[3][3],i,j;

 for (i=0;i<3;i++)

 {

 for (j=0;j<3;j++)

 {

 printf("Enter a[%d][%d]: ",i,j);

 scanf("%d",&arr[i][j]);

 }

 }

 printf("\n printing the elements\n");

 for(i=0;i<3;i++)

 {

 printf("\n");

 for (j=0;j<3;j++)

 {

 printf("%d\t",arr[i][j]);

 }

 }

}

Output
Enter a[0][0]: 56

Enter a[0][1]: 10

Enter a[0][2]: 30

Enter a[1][0]: 34

Enter a[1][1]: 21

Enter a[1][2]: 34

Enter a[2][0]: 45

Enter a[2][1]: 56

Enter a[2][2]: 78

 printing the elements

56 10 30

34 21 34

45 56 78

Passing Array to Function in C

In C, there are various general problems which requires passing more than one variable of

the same type to a function. For example, consider a function which sorts the 10 elements
in ascending order. Such a function requires 10 numbers to be passed as the actual
parameters from the main function. Here, instead of declaring 10 different numbers and
then passing into the function, we can declare and initialize an array and pass that into the
function. This will resolve all the complexity since the function will now work for any number
of values.

As we know that the array_name contains the address of the first element. Here, we must
notice that we need to pass only the name of the array in the function which is intended to
accept an array. The array defined as the formal parameter will automatically refer to the
array specified by the array name defined as an actual parameter.

Consider the following syntax to pass an array to the function.

functionname(arrayname);//passing array

Methods to declare a function that receives an array as an argument

There are 3 ways to declare the function which is intended to receive an array as an

argument.

First way:

return_type function(type arrayname[])

Declaring blank subscript notation [] is the widely used technique.

Second way:

return_type function(type arrayname[SIZE])

Optionally, we can define size in subscript notation [].

Third way:

return_type function(type *arrayname)

You can also use the concept of a pointer. In pointer chapter, we will learn about it.

C language passing an array to function example

#include<stdio.h>

int minarray(int arr[],int size){

int min=arr[0];

int i=0;

for(i=1;i<size;i++){

if(min>arr[i]){

min=arr[i];

}

}//end of for

return min;

}//end of function

int main(){

int i=0,min=0;

int numbers[]={4,5,7,3,8,9};//declaration of array

min=minarray(numbers,6);//passing array with size

printf("minimum number is %d \n",min);

return 0;

}

Output
minimum number is 3

C function to sort the array

#include<stdio.h>

void Bubble_Sort(int[]);

void main ()

{

 int arr[10] = { 10, 9, 7, 101, 23, 44, 12, 78, 34, 23};

 Bubble_Sort(arr);

}

void Bubble_Sort(int a[]) //array a[] points to arr.

{

int i, j,temp;

 for(i = 0; i<10; i++)

 {

 for(j = i+1; j<10; j++)

 {

 if(a[j] < a[i])

 {

 temp = a[i];

 a[i] = a[j];

 a[j] = temp;

 }

 }

 }

 printf("Printing Sorted Element List ...\n");

 for(i = 0; i<10; i++)

 {

 printf("%d\n",a[i]);

 }

}

Output
Printing Sorted Element List ...

7

9

10

12

23

23

34

44

78

101

Returning array from the function

As we know that, a function can not return more than one value. However, if we try to write

the return statement as return a, b, c; to return three values (a,b,c), the function will return
the last mentioned value which is c in our case. In some problems, we may need to return
multiple values from a function. In such cases, an array is returned from the function.

Returning an array is similar to passing the array into the function. The name of the array is
returned from the function. To make a function returning an array, the following syntax is
used.

int * Function_name() {

//some statements;

return array_type;

}

To store the array returned from the function, we can define a pointer which points to that

array. We can traverse the array by increasing that pointer since pointer initially points to

the base address of the array. Consider the following example that contains a function

returning the sorted array.

#include<stdio.h>

int* Bubble_Sort(int[]);

void main ()

{

 int arr[10] = { 10, 9, 7, 101, 23, 44, 12, 78, 34, 23};

 int *p = Bubble_Sort(arr), i;

 printf("printing sorted elements ...\n");

 for(i=0;i<10;i++)

 {

 printf("%d\n",*(p+i));

 }

}

int* Bubble_Sort(int a[]) //array a[] points to arr.

{

int i, j,temp;

 for(i = 0; i<10; i++)

 {

 for(j = i+1; j<10; j++)

 {

 if(a[j] < a[i])

 {

 temp = a[i];

 a[i] = a[j];

 a[j] = temp;

 }

 }

 }

 return a;

}

Output
Printing Sorted Element List ...

7

9

10

12

23

23

34

44

78

101

C Pointers

The pointer in C language is a variable which stores the address of another variable. This

variable can be of type int, char, array, function, or any other pointer. The size of the
pointer depends on the architecture. However, in 32-bit architecture the size of a pointer is
2 byte.

Consider the following example to define a pointer which stores the address of an integer.

int n = 10;

int* p = &n; // Variable p of type pointer is pointing to the address of the variable n of type

 integer.

Declaring a pointer

The pointer in c language can be declared using * (asterisk symbol). It is also known as
indirection pointer used to dereference a pointer.

int *a;//pointer to int

char *c;//pointer to char

Pointer Example

An example of using pointers to print the address and value is given below.

As you can see in the above figure, pointer variable stores the address of number variable,
i.e., fff4. The value of number variable is 50. But the address of pointer variable p is aaa3.

By the help of * (indirection operator), we can print the value of pointer variable p.

Let's see the pointer example as explained for the above figure.

#include<stdio.h>

int main(){

int number=50;

int *p;

p=&number;//stores the address of number variable

printf("Address of p variable is %x \n",p); // p contains the address of the number therefore

 printing p gives the address of number.

printf("Value of p variable is %d \n",*p); // As we know that * is used to dereference a poin

ter therefore if we print *p, we will get the value stored at the address contained by p.

return 0;

}

Output
Address of number variable is fff4

Address of p variable is fff4

Value of p variable is 50

Pointer to array
int arr[10];

int *p[10]=&arr; // Variable p of type pointer is pointing to the address of an integer array

arr.

Pointer to a function
void show (int);

void(*p)(int) = &display; // Pointer p is pointing to the address of a function

Pointer to structure
struct st {

 int i;

 float f;

}ref;

struct st *p = &ref;

Advantage of pointer

1) Pointer reduces the code and improves the performance, it is used to retrieving

strings, trees, etc. and used with arrays, structures, and functions.

2) We can return multiple values from a function using the pointer.

3) It makes you able to access any memory location in the computer's memory.

Usage of pointer

There are many applications of pointers in c language.

1) Dynamic memory allocation

In c language, we can dynamically allocate memory using malloc() and calloc() functions
where the pointer is used.

2) Arrays, Functions, and Structures

Pointers in c language are widely used in arrays, functions, and structures. It reduces the

code and improves the performance.

Address Of (&) Operator

The address of operator '&' returns the address of a variable. But, we need to use %u to

display the address of a variable.

#include<stdio.h>

int main(){

int number=50;

printf("value of number is %d, address of number is %u",number,&number);

return 0;

}

Output
value of number is 50, address of number is fff4

NULL Pointer

A pointer that is not assigned any value but NULL is known as the NULL pointer. If you don't

have any address to be specified in the pointer at the time of declaration, you can assign
NULL value. It will provide a better approach.

int *p=NULL;

In the most libraries, the value of the pointer is 0 (zero).

Pointer Program to swap two numbers without using
the 3rd variable.

#include<stdio.h>

int main(){

int a=10,b=20,*p1=&a,*p2=&b;

printf("Before swap: *p1=%d *p2=%d",*p1,*p2);

*p1=*p1+*p2;

*p2=*p1-*p2;

*p1=*p1-*p2;

printf("\nAfter swap: *p1=%d *p2=%d",*p1,*p2);

return 0;

}

Output
Before swap: *p1=10 *p2=20

After swap: *p1=20 *p2=10

Reading complex pointers

There are several things which must be taken into the consideration while reading the
complex pointers in C. Lets see the precedence and associativity of the operators which are
used regarding pointers.

Operator Precedence Associativity

(), [] 1 Left to right

*, identifier 2 Right to left

Data type 3 -

Here,we must notice that,

o (): This operator is a bracket operator used to declare and define the function.

o []: This operator is an array subscript operator

o * : This operator is a pointer operator.

o Identifier: It is the name of the pointer. The priority will always be assigned to this.

o Data type: Data type is the type of the variable to which the pointer is intended to

point. It also includes the modifier like signed int, long, etc).

How to read the pointer: int (*p)[10].

To read the pointer, we must see that () and [] have the equal precedence. Therefore, their
associativity must be considered here. The associativity is left to right, so the priority goes
to ().

Inside the bracket (), pointer operator * and pointer name (identifier) p have the same
precedence. Therefore, their associativity must be considered here which is right to left, so
the priority goes to p, and the second priority goes to *.

Assign the 3rd priority to [] since the data type has the last precedence. Therefore the
pointer will look like following.

o char -> 4

o * -> 2

o p -> 1

o [10] -> 3

The pointer will be read as p is a pointer to an array of integers of size 10.

Example

How to read the following pointer?

int (*p)(int (*)[2], int (*)void))

Explanation

This pointer will be read as p is a pointer to such function which accepts the first parameter
as the pointer to a one-dimensional array of integers of size two and the second parameter

as the pointer to a function which parameter is void and return type is the integer.

C Double Pointer (Pointer to Pointer)

As we know that, a pointer is used to store the address of a variable in C. Pointer reduces

the access time of a variable. However, In C, we can also define a pointer to store the
address of another pointer. Such pointer is known as a double pointer (pointer to pointer).
The first pointer is used to store the address of a variable whereas the second pointer is
used to store the address of the first pointer. Let's understand it by the diagram given
below.

The syntax of declaring a double pointer is given below.

int **p; // pointer to a pointer which is pointing to an integer.

Consider the following example.

#include<stdio.h>

void main ()

{

 int a = 10;

 int *p;

 int **pp;

 p = &a; // pointer p is pointing to the address of a

 pp = &p; // pointer pp is a double pointer pointing to the address of pointer p

 printf("address of a: %x\n",p); // Address of a will be printed

 printf("address of p: %x\n",pp); // Address of p will be printed

 printf("value stored at p: %d\n",*p); // value stoted at the address contained by p i.e. 1

0 will be printed

 printf("value stored at pp: %d\n",**pp); // value stored at the address contained by the

pointer stoyred at pp

}

Output
address of a: d26a8734

address of p: d26a8738

value stored at p: 10

value stored at pp: 10

C double pointer example

Let's see an example where one pointer points to the address of another pointer.

As you can see in the above figure, p2 contains the address of p (fff2), and p contains the

address of number variable (fff4).

#include<stdio.h>

int main()

{

int number=50;

int *p;//pointer to int

int **p2;//pointer to pointer

p=&number;//stores the address of number variable

p2=&p;

printf("Address of number variable is %x \n",&number);

printf("Address of p variable is %x \n",p);

printf("Value of *p variable is %d \n",*p);

printf("Address of p2 variable is %x \n",p2);

printf("Value of **p2 variable is %d \n",*p);

return 0;

}

Output
Address of number variable is fff4

Address of p variable is fff4

Value of *p variable is 50

Address of p2 variable is fff2

Value of **p variable is 50

Q. What will be the output of the following program?

#include<stdio.h>

void main ()

{

 int a[10] = {100, 206, 300, 409, 509, 601}; //Line 1

 int *p[] = {a, a+1, a+2, a+3, a+4, a+5}; //Line 2

 int **pp = p; //Line 3

 pp++; // Line 4

 printf("%d %d %d\n",pp-p,*pp - a,**pp); // Line 5

 *pp++; // Line 6

 printf("%d %d %d\n",pp-p,*pp - a,**pp); // Line 7

 ++*pp; // Line 8

 printf("%d %d %d\n",pp-p,*pp - a,**pp); // Line 9

 ++**pp; // Line 10

 printf("%d %d %d\n",pp-p,*pp - a,**pp); // Line 11

}

Explanation

In the above question, the pointer arithmetic is used with the double pointer. An array of 6
elements is defined which is pointed by an array of pointer p. The pointer array p is pointed
by a double pointer pp. However, the above image gives you a brief idea about how the
memory is being allocated to the array a and the pointer array p. The elements of p are the

pointers that are pointing to every element of the array a. Since we know that the array

name contains the base address of the array hence, it will work as a pointer and can the
value can be traversed by using *(a), *(a+1), etc. As shown in the image, a[0] can be
accessed in the following ways.

o a[0]: it is the simplest way to access the first element of the array

o *(a): since a store the address of the first element of the array, we can access its

value by using indirection pointer on it.

o *p[0]: if a[0] is to be accessed by using a pointer p to it, then we can use indirection

operator (*) on the first element of the pointer array p, i.e., *p[0].

o **(pp): as pp stores the base address of the pointer array, *pp will give the value of

the first element of the pointer array that is the address of the first element of the

integer array. **p will give the actual value of the first element of the integer array.

Coming to the program, Line 1 and 2 declare the integer and pointer array relatively. Line 3
initializes the double pointer to the pointer array p. As shown in the image, if the address of
the array starts from 200 and the size of the integer is 2, then the pointer array will contain
the values as 200, 202, 204, 206, 208, 210. Let us consider that the base address of the
pointer array is 300; the double pointer pp contains the address of pointer array, i.e., 300.
Line number 4 increases the value of pp by 1, i.e., pp will now point to address 302.

Line number 5 contains an expression which prints three values, i.e., pp - p, *pp - a, **pp.

Let's calculate them each one of them.

o pp = 302, p = 300 => pp-p = (302-300)/2 => pp-p = 1, i.e., 1 will be printed.

o pp = 302, *pp = 202, a = 200 => *pp - a = 202 - 200 = 2/2 = 1, i.e., 1 will be

printed.

o pp = 302, *pp = 202, *(*pp) = 206, i.e., 206 will be printed.

Therefore as the result of line 5, The output 1, 1, 206 will be printed on the console. On line
6, *pp++ is written. Here, we must notice that two unary operators * and ++ will have the
same precedence. Therefore, by the rule of associativity, it will be evaluated from right to
left. Therefore the expression *pp++ can be rewritten as (*(pp++)). Since, pp = 302 which
will now become, 304. *pp will give 204.

On line 7, again the expression is written which prints three values, i.e., pp-p, *pp-a, *pp.
Let's calculate each one of them.

o pp = 304, p = 300 => pp - p = (304 - 300)/2 => pp-p = 2, i.e., 2 will be printed.

o pp = 304, *pp = 204, a = 200 => *pp-a = (204 - 200)/2 = 2, i.e., 2 will be printed.

o pp = 304, *pp = 204, *(*pp) = 300, i.e., 300 will be printed.

Therefore, as the result of line 7, The output 2, 2, 300 will be printed on the console. On
line 8, ++*pp is written. According to the rule of associativity, this can be rewritten as,
(++(*(pp))). Since, pp = 304, *pp = 204, the value of *pp = *(p[2]) = 206 which will now
point to a[3].

On line 9, again the expression is written which prints three values, i.e., pp-p, *pp-a, *pp.
Let's calculate each one of them.

o pp = 304, p = 300 => pp - p = (304 - 300)/2 => pp-p = 2, i.e., 2 will be printed.

o pp = 304, *pp = 206, a = 200 => *pp-a = (206 - 200)/2 = 3, i.e., 3 will be printed.

o pp = 304, *pp = 206, *(*pp) = 409, i.e., 409 will be printed.

Therefore, as the result of line 9, the output 2, 3, 409 will be printed on the console. On line
10, ++**pp is writen. according to the rule of associativity, this can be rewritten as,

(++(*(*(pp)))). pp = 304, *pp = 206, **pp = 409, ++**pp => *pp = *pp + 1 = 410. In
other words, a[3] = 410.

On line 11, again the expression is written which prints three values, i.e., pp-p, *pp-a, *pp.
Let's calculate each one of them.

o pp = 304, p = 300 => pp - p = (304 - 300)/2 => pp-p = 2, i.e., 2 will be printed.

o pp = 304, *pp = 206, a = 200 => *pp-a = (206 - 200)/2 = 3, i.e., 3 will be printed.

o On line 8, **pp = 410.

Therefore as the result of line 9, the output 2, 3, 410 will be printed on the console.

At last, the output of the complete program will be given as:

Output

1 1 206

2 2 300

2 3 409

2 3 410

Pointer Arithmetic in C

We can perform arithmetic operations on the pointers like addition, subtraction, etc.

However, as we know that pointer contains the address, the result of an arithmetic
operation performed on the pointer will also be a pointer if the other operand is of type
integer. In pointer-from-pointer subtraction, the result will be an integer value. Following
arithmetic operations are possible on the pointer in C language:

o Increment

o Decrement

o Addition

o Subtraction

o Comparison

Incrementing Pointer in C

If we increment a pointer by 1, the pointer will start pointing to the immediate next
location. This is somewhat different from the general arithmetic since the value of the
pointer will get increased by the size of the data type to which the pointer is pointing.

We can traverse an array by using the increment operation on a pointer which will keep
pointing to every element of the array, perform some operation on that, and update itself in
a loop.

The Rule to increment the pointer is given below:

new_address= current_address + i * size_of(data type)

Where i is the number by which the pointer get increased.

32-bit

For 32-bit int variable, it will be incremented by 2 bytes.

64-bit

For 64-bit int variable, it will be incremented by 4 bytes.

Let's see the example of incrementing pointer variable on 64-bit architecture.

#include<stdio.h>

int main(){

int number=50;

int *p;//pointer to int

p=&number;//stores the address of number variable

printf("Address of p variable is %u \n",p);

p=p+1;

printf("After increment: Address of p variable is %u \n",p); // in our case, p will get increme

nted by 4 bytes.

return 0;

}

Output
Address of p variable is 3214864300

After increment: Address of p variable is 3214864304

Traversing an array by using pointer

#include<stdio.h>

void main ()

{

 int arr[5] = {1, 2, 3, 4, 5};

 int *p = arr;

 int i;

 printf("printing array elements...\n");

 for(i = 0; i< 5; i++)

 {

 printf("%d ",*(p+i));

 }

}

Output
printing array elements...

1 2 3 4 5

Decrementing Pointer in C

Like increment, we can decrement a pointer variable. If we decrement a pointer, it will start

pointing to the previous location. The formula of decrementing the pointer is given below:

new_address= current_address - i * size_of(data type)

32-bit

For 32-bit int variable, it will be decremented by 2 bytes.

64-bit

For 64-bit int variable, it will be decremented by 4 bytes.

Let's see the example of decrementing pointer variable on 64-bit OS.

#include <stdio.h>

void main(){

int number=50;

int *p;//pointer to int

p=&number;//stores the address of number variable

printf("Address of p variable is %u \n",p);

p=p-1;

printf("After decrement: Address of p variable is %u \n",p); // P will now point to the immidi

ate previous location.

}

Output
Address of p variable is 3214864300

After decrement: Address of p variable is 3214864296

C Pointer Addition

We can add a value to the pointer variable. The formula of adding value to pointer is given
below:

new_address= current_address + (number * size_of(data type))

32-bit

For 32-bit int variable, it will add 2 * number.

64-bit

For 64-bit int variable, it will add 4 * number.

Let's see the example of adding value to pointer variable on 64-bit architecture.

#include<stdio.h>

int main(){

int number=50;

int *p;//pointer to int

p=&number;//stores the address of number variable

printf("Address of p variable is %u \n",p);

p=p+3; //adding 3 to pointer variable

printf("After adding 3: Address of p variable is %u \n",p);

return 0;

}

Output
Address of p variable is 3214864300

After adding 3: Address of p variable is 3214864312

As you can see, the address of p is 3214864300. But after adding 3 with p variable, it is
3214864312, i.e., 4*3=12 increment. Since we are using 64-bit architecture, it increments
12. But if we were using 32-bit architecture, it was incrementing to 6 only, i.e., 2*3=6. As
integer value occupies 2-byte memory in 32-bit OS.

C Pointer Subtraction

Like pointer addition, we can subtract a value from the pointer variable. Subtracting any
number from a pointer will give an address. The formula of subtracting value from the
pointer variable is given below:

new_address= current_address - (number * size_of(data type))

32-bit

For 32-bit int variable, it will subtract 2 * number.

64-bit

For 64-bit int variable, it will subtract 4 * number.

Let's see the example of subtracting value from the pointer variable on 64-bit architecture.

#include<stdio.h>

int main(){

int number=50;

int *p;//pointer to int

p=&number;//stores the address of number variable

printf("Address of p variable is %u \n",p);

p=p-3; //subtracting 3 from pointer variable

printf("After subtracting 3: Address of p variable is %u \n",p);

return 0;

}

Output
Address of p variable is 3214864300

After subtracting 3: Address of p variable is 3214864288

You can see after subtracting 3 from the pointer variable, it is 12 (4*3) less than the
previous address value.

However, instead of subtracting a number, we can also subtract an address from another
address (pointer). This will result in a number. It will not be a simple arithmetic operation,
but it will follow the following rule.

If two pointers are of the same type,

Address2 -
 Address1 = (Subtraction of two addresses)/size of data type which pointer points

Consider the following example to subtract one pointer from an another.

#include<stdio.h>

void main ()

{

 int i = 100;

 int *p = &i;

 int *temp;

 temp = p;

 p = p + 3;

 printf("Pointer Subtraction: %d - %d = %d",p, temp, p-temp);

}

Output
Pointer Subtraction: 1030585080 - 1030585068 = 3

Illegal arithmetic with pointers

There are various operations which can not be performed on pointers. Since, pointer stores

address hence we must ignore the operations which may lead to an illegal address, for
example, addition, and multiplication. A list of such operations is given below.

o Address + Address = illegal

o Address * Address = illegal

o Address % Address = illegal

o Address / Address = illegal

o Address & Address = illegal

o Address ^ Address = illegal

o Address | Address = illegal

o ~Address = illegal

Pointer to function in C

As we discussed in the previous chapter, a pointer can point to a function in C. However,
the declaration of the pointer variable must be the same as the function. Consider the
following example to make a pointer pointing to the function.

#include<stdio.h>

int addition ();

int main ()

{

 int result;

 int (*ptr)();

 ptr = &addition;

 result = (*ptr)();

 printf("The sum is %d",result);

}

int addition()

{

 int a, b;

 printf("Enter two numbers?");

 scanf("%d %d",&a,&b);

 return a+b;

}

Output
Enter two numbers?10 15

The sum is 25

Pointer to Array of functions in C

To understand the concept of an array of functions, we must understand the array of

function. Basically, an array of the function is an array which contains the addresses of
functions. In other words, the pointer to an array of functions is a pointer pointing to an
array which contains the pointers to the functions. Consider the following example

#include<stdio.h>

int show();

int showadd(int);

int (*arr[3])();

int (*(*ptr)[3])();

int main ()

{

 int result1;

 arr[0] = show;

 arr[1] = showadd;

 ptr = &arr;

 result1 = (**ptr)();

 printf("printing the value returned by show : %d",result1);

 (*(*ptr+1))(result1);

}

int show()

{

 int a = 65;

 return a++;

}

int showadd(int b)

{

 printf("\nAdding 90 to the value returned by show: %d",b+90);

}

Output
printing the value returned by show : 65

Adding 90 to the value returned by show: 155

Dynamic memory allocation in C

The concept of dynamic memory allocation in c language enables the C programmer to

allocate memory at runtime. Dynamic memory allocation in c language is possible by 4
functions of stdlib.h header file.

1. malloc()

2. calloc()

3. realloc()

4. free()

Before learning above functions, let's understand the difference between static memory
allocation and dynamic memory allocation.

tatic memory allocation dynamic memory allocation

memory is allocated at compile time. memory is allocated at run time.

memory can't be increased while executing

program.

memory can be increased while executing program.

used in array. used in linked list.

Now let's have a quick look at the methods used for dynamic memory allocation.

malloc() allocates single block of requested memory.

calloc() allocates multiple block of requested memory.

realloc() reallocates the memory occupied by malloc() or calloc() functions.

free() frees the dynamically allocated memory.

malloc() function in C

The malloc() function allocates single block of requested memory.

It doesn't initialize memory at execution time, so it has garbage value initially.

It returns NULL if memory is not sufficient.

The syntax of malloc() function is given below:

ptr=(cast-type*)malloc(byte-size)

Let's see the example of malloc() function.

#include<stdio.h>

#include<stdlib.h>

int main(){

 int n,i,*ptr,sum=0;

 printf("Enter number of elements: ");

 scanf("%d",&n);

 ptr=(int*)malloc(n*sizeof(int)); //memory allocated using malloc

 if(ptr==NULL)

 {

 printf("Sorry! unable to allocate memory");

 exit(0);

 }

 printf("Enter elements of array: ");

 for(i=0;i<n;++i)

 {

 scanf("%d",ptr+i);

 sum+=*(ptr+i);

 }

 printf("Sum=%d",sum);

 free(ptr);

return 0;

}

Output

Enter elements of array: 3

Enter elements of array: 10

10

10

Sum=30

calloc() function in C

The calloc() function allocates multiple block of requested memory.

It initially initialize all bytes to zero.

It returns NULL if memory is not sufficient.

The syntax of calloc() function is given below:

ptr=(cast-type*)calloc(number, byte-size)

Let's see the example of calloc() function.

#include<stdio.h>

#include<stdlib.h>

int main(){

 int n,i,*ptr,sum=0;

 printf("Enter number of elements: ");

 scanf("%d",&n);

 ptr=(int*)calloc(n,sizeof(int)); //memory allocated using calloc

 if(ptr==NULL)

 {

 printf("Sorry! unable to allocate memory");

 exit(0);

 }

 printf("Enter elements of array: ");

 for(i=0;i<n;++i)

 {

 scanf("%d",ptr+i);

 sum+=*(ptr+i);

 }

 printf("Sum=%d",sum);

 free(ptr);

return 0;

}

Output:

Enter elements of array: 3

Enter elements of array: 10

10

10

Sum=30

realloc() function in C

If memory is not sufficient for malloc() or calloc(), you can reallocate the memory by

realloc() function. In short, it changes the memory size.

Let's see the syntax of realloc() function.

ptr=realloc(ptr, new-size)

free() function in C

The memory occupied by malloc() or calloc() functions must be released by calling free()
function. Otherwise, it will consume memory until program exit.

Let's see the syntax of free() function.

free(ptr)

C Structure

In C, there are cases where we need to store multiple attributes of an entity. It is not

necessary that an entity has all the information of one type only. It can have different
attributes of different data types. For example, an entity Student may have its name
(string), roll number (int), marks (float). To store such type of information regarding an
entity student, we have the following approaches:

o Construct individual arrays for storing names, roll numbers, and marks.

o Use a special data structure to store the collection of different data types.

Let's look at the first approach in detail.

#include<stdio.h>

void main ()

{

 char names[2][10],dummy; // 2-

dimensioanal character array names is used to store the names of the students

 int roll_numbers[2],i;

 float marks[2];

 for (i=0;i<3;i++)

 {

 printf("Enter the name, roll number, and marks of the student %d",i+1);

 scanf("%s %d %f",&names[i],&roll_numbers[i],&marks[i]);

 scanf("%c",&dummy); // enter will be stored into dummy character at each iteration

 }

 printf("Printing the Student details ...\n");

 for (i=0;i<3;i++)

 {

 printf("%s %d %f\n",names[i],roll_numbers[i],marks[i]);

 }

}

Output
Enter the name, roll number, and marks of the student 1Arun 90 91

Enter the name, roll number, and marks of the student 2Varun 91 56

Enter the name, roll number, and marks of the student 3Sham 89 69

Printing the Student details...

Arun 90 91.000000

Varun 91 56.000000

Sham 89 69.000000

The above program may fulfill our requirement of storing the information of an entity
student. However, the program is very complex, and the complexity increase with the
amount of the input. The elements of each of the array are stored contiguously, but all the
arrays may not be stored contiguously in the memory. C provides you with an additional
and simpler approach where you can use a special data structure, i.e., structure, in which,
you can group all the information of different data type regarding an entity.

What is Structure

Structure in c is a user-defined data type that enables us to store the collection of different

data types. Each element of a structure is called a member. Structures ca; simulate the use
of classes and templates as it can store various information

The ,struct keyword is used to define the structure. Let's see the syntax to define the
structure in c.

struct structure_name

{

 data_type member1;

 data_type member2;

 .

 .

 data_type memeberN;

};

Let's see the example to define a structure for an entity employee in c.

struct employee

{ int id;

 char name[20];

 float salary;

};

The following image shows the memory allocation of the structure employee that is defined
in the above example.

Here, struct is the keyword; employee is the name of the structure; id, name,
and salary are the members or fields of the structure. Let's understand it by the diagram
given below:

Declaring structure variable

We can declare a variable for the structure so that we can access the member of the
structure easily. There are two ways to declare structure variable:

1. By struct keyword within main() function

2. By declaring a variable at the time of defining the structure.

1st way:

Let's see the example to declare the structure variable by struct keyword. It should be
declared within the main function.

struct employee

{ int id;

 char name[50];

 float salary;

};

Now write given code inside the main() function.

struct employee e1, e2;

The variables e1 and e2 can be used to access the values stored in the structure. Here, e1
and e2 can be treated in the same way as the objects in C++ and Java.

2nd way:

Let's see another way to declare variable at the time of defining the structure.

struct employee

{ int id;

 char name[50];

 float salary;

}e1,e2;

Which approach is good

If number of variables are not fixed, use the 1st approach. It provides you the flexibility to
declare the structure variable many times.

If no. of variables are fixed, use 2nd approach. It saves your code to declare a variable in
main() function.

Accessing members of the structure

There are two ways to access structure members:

1. By . (member or dot operator)

2. By -> (structure pointer operator)

Let's see the code to access the id member of p1 variable by . (member) operator.

p1.id

C Structure example

Let's see a simple example of structure in C language.

#include<stdio.h>

#include <string.h>

struct employee

{ int id;

 char name[50];

}e1; //declaring e1 variable for structure

int main()

{

 //store first employee information

 e1.id=101;

 strcpy(e1.name, "Sonoo Jaiswal");//copying string into char array

 //printing first employee information

 printf("employee 1 id : %d\n", e1.id);

 printf("employee 1 name : %s\n", e1.name);

return 0;

}

Output:

employee 1 id : 101

employee 1 name : Sonoo Jaiswal

Let's see another example of the structure in C language to store many employees
information.

#include<stdio.h>

#include <string.h>

struct employee

{ int id;

 char name[50];

 float salary;

}e1,e2; //declaring e1 and e2 variables for structure

int main()

{

 //store first employee information

 e1.id=101;

 strcpy(e1.name, "Sonoo Jaiswal");//copying string into char array

 e1.salary=56000;

 //store second employee information

 e2.id=102;

 strcpy(e2.name, "James Bond");

 e2.salary=126000;

 //printing first employee information

 printf("employee 1 id : %d\n", e1.id);

 printf("employee 1 name : %s\n", e1.name);

 printf("employee 1 salary : %f\n", e1.salary);

 //printing second employee information

 printf("employee 2 id : %d\n", e2.id);

 printf("employee 2 name : %s\n", e2.name);

 printf("employee 2 salary : %f\n", e2.salary);

 return 0;

}

Output:

employee 1 id : 101

employee 1 name : Sonoo Jaiswal

employee 1 salary : 56000.000000

employee 2 id : 102

employee 2 name : James Bond

employee 2 salary : 126000.000000

C Array of Structures

Why use an array of structures?

Consider a case, where we need to store the data of 5 students. We can store it by using
the structure as given below.

#include<stdio.h>

struct student

{

 char name[20];

 int id;

 float marks;

};

void main()

{

 struct student s1,s2,s3;

 int dummy;

 printf("Enter the name, id, and marks of student 1 ");

 scanf("%s %d %f",s1.name,&s1.id,&s1.marks);

 scanf("%c",&dummy);

 printf("Enter the name, id, and marks of student 2 ");

 scanf("%s %d %f",s2.name,&s2.id,&s2.marks);

 scanf("%c",&dummy);

 printf("Enter the name, id, and marks of student 3 ");

 scanf("%s %d %f",s3.name,&s3.id,&s3.marks);

 scanf("%c",&dummy);

 printf("Printing the details....\n");

 printf("%s %d %f\n",s1.name,s1.id,s1.marks);

 printf("%s %d %f\n",s2.name,s2.id,s2.marks);

 printf("%s %d %f\n",s3.name,s3.id,s3.marks);

}

Output
Enter the name, id, and marks of student 1 James 90 90

Enter the name, id, and marks of student 2 Adoms 90 90

Enter the name, id, and marks of student 3 Nick 90 90

Printing the details....

James 90 90.000000

Adoms 90 90.000000

Nick 90 90.000000

In the above program, we have stored data of 3 students in the structure. However, the
complexity of the program will be increased if there are 20 students. In that case, we will
have to declare 20 different structure variables and store them one by one. This will always
be tough since we will have to declare a variable every time we add a student.
Remembering the name of all the variables is also a very tricky task. However, c enables us
to declare an array of structures by using which, we can avoid declaring the different
structure variables; instead we can make a collection containing all the structures that store
the information of different entities.

Array of Structures in C

An array of structres in C can be defined as the collection of multiple structures variables
where each variable contains information about different entities. The array of structures in
C are used to store information about multiple entities of different data types. The array of
structures is also known as the collection of structures.

Let's see an example of an array of structures that stores information of 5 students and
prints it.

#include<stdio.h>

#include <string.h>

struct student{

int rollno;

char name[10];

};

int main(){

int i;

struct student st[5];

printf("Enter Records of 5 students");

for(i=0;i<5;i++){

printf("\nEnter Rollno:");

scanf("%d",&st[i].rollno);

printf("\nEnter Name:");

scanf("%s",&st[i].name);

}

printf("\nStudent Information List:");

for(i=0;i<5;i++){

printf("\nRollno:%d, Name:%s",st[i].rollno,st[i].name);

}

 return 0;

}

Output:

Enter Records of 5 students

Enter Rollno:1

Enter Name:Sonoo

Enter Rollno:2

Enter Name:Ratan

Enter Rollno:3

Enter Name:Vimal

Enter Rollno:4

Enter Name:James

Enter Rollno:5

Enter Name:Sarfraz

Student Information List:

Rollno:1, Name:Sonoo

Rollno:2, Name:Ratan

Rollno:3, Name:Vimal

Rollno:4, Name:James

Rollno:5, Name:Sarfraz

Nested Structure in C

C provides us the feature of nesting one structure within another structure by using which,

complex data types are created. For example, we may need to store the address of an
entity employee in a structure. The attribute address may also have the subparts as street
number, city, state, and pin code. Hence, to store the address of the employee, we need to
store the address of the employee into a separate structure and nest the structure address
into the structure employee. Consider the following program.

#include<stdio.h>

struct address

{

 char city[20];

 int pin;

 char phone[14];

};

struct employee

{

 char name[20];

 struct address add;

};

void main ()

{

 struct employee emp;

 printf("Enter employee information?\n");

 scanf("%s %s %d %s",emp.name,emp.add.city, &emp.add.pin, emp.add.phone);

 printf("Printing the employee information....\n");

 printf("name: %s\nCity: %s\nPincode: %d\nPhone: %s",emp.name,emp.add.city,emp.a

dd.pin,emp.add.phone);

}

Output
Enter employee information?

Arun

Delhi

110001

1234567890

Printing the employee information....

name: Arun

City: Delhi

Pincode: 110001

Phone: 1234567890

The structure can be nested in the following ways.

1. By separate structure

2. By Embedded structure

1) Separate structure

Here, we create two structures, but the dependent structure should be used inside the main
structure as a member. Consider the following example.

struct Date

{

 int dd;

 int mm;

 int yyyy;

};

struct Employee

{

 int id;

 char name[20];

 struct Date doj;

}emp1;

As you can see, doj (date of joining) is the variable of type Date. Here doj is used as a
member in Employee structure. In this way, we can use Date structure in many structures.

2) Embedded structure

The embedded structure enables us to declare the structure inside the structure. Hence, it
requires less line of codes but it can not be used in multiple data structures. Consider the
following example.

struct Employee

{

 int id;

 char name[20];

 struct Date

 {

 int dd;

 int mm;

 int yyyy;

 }doj;

}emp1;

Accessing Nested Structure

We can access the member of the nested structure by
Outer_Structure.Nested_Structure.member as given below:

e1.doj.dd

e1.doj.mm

e1.doj.yyyy

C Nested Structure example

Let's see a simple example of the nested structure in C language.

#include <stdio.h>

#include <string.h>

struct Employee

{

 int id;

 char name[20];

 struct Date

 {

 int dd;

 int mm;

 int yyyy;

 }doj;

}e1;

int main()

{

 //storing employee information

 e1.id=101;

 strcpy(e1.name, "Sonoo Jaiswal");//copying string into char array

 e1.doj.dd=10;

 e1.doj.mm=11;

 e1.doj.yyyy=2014;

 //printing first employee information

 printf("employee id : %d\n", e1.id);

 printf("employee name : %s\n", e1.name);

 printf("employee date of joining (dd/mm/yyyy) : %d/%d/%d\n", e1.doj.dd,e1.doj.mm,e

1.doj.yyyy);

 return 0;

}

Output:

employee id : 101

employee name : Sonoo Jaiswal

employee date of joining (dd/mm/yyyy) : 10/11/2014

Passing structure to function

Just like other variables, a structure can also be passed to a function. We may pass the
structure members into the function or pass the structure variable at once. Consider the
following example to pass the structure variable employee to a function display() which is
used to display the details of an employee.

#include<stdio.h>

struct address

{

 char city[20];

 int pin;

 char phone[14];

};

struct employee

{

 char name[20];

 struct address add;

};

void display(struct employee);

void main ()

{

 struct employee emp;

 printf("Enter employee information?\n");

 scanf("%s %s %d %s",emp.name,emp.add.city, &emp.add.pin, emp.add.phone);

 display(emp);

}

void display(struct employee emp)

{

 printf("Printing the details....\n");

 printf("%s %s %d %s",emp.name,emp.add.city,emp.add.pin,emp.add.phone);

}

C Union

Like structure, Union in c language is a user-defined data type that is used to store the

different type of elements.

At once, only one member of the union can occupy the memory. In other words, we can say
that the size of the union in any instance is equal to the size of its largest element.

Advantage of union over structure

It occupies less memory because it occupies the size of the largest member only.

Disadvantage of union over structure

Only the last entered data can be stored in the union. It overwrites the data previously
stored in the union.

Defining union

The union keyword is used to define the union. Let's see the syntax to define union in c.

union union_name

{

 data_type member1;

 data_type member2;

 .

 .

 data_type memeberN;

};

Let's see the example to define union for an employee in c.

union employee

{ int id;

 char name[50];

 float salary;

};

C Union example

Let's see a simple example of union in C language.

#include <stdio.h>

#include <string.h>

union employee

{ int id;

 char name[50];

}e1; //declaring e1 variable for union

int main()

{

 //store first employee information

 e1.id=101;

 strcpy(e1.name, "Sonoo Jaiswal");//copying string into char array

 //printing first employee information

 printf("employee 1 id : %d\n", e1.id);

 printf("employee 1 name : %s\n", e1.name);

 return 0;

}

Output:

employee 1 id : 1869508435

employee 1 name : Sonoo Jaiswal

As you can see, id gets garbage value because name has large memory size. So only name

will have actual value.

File Handling in C

In programming, we may require some specific input data to be generated several numbers

of times. Sometimes, it is not enough to only display the data on the console. The data to
be displayed may be very large, and only a limited amount of data can be displayed on the
console, and since the memory is volatile, it is impossible to recover the programmatically
generated data again and again. However, if we need to do so, we may store it onto the
local file system which is volatile and can be accessed every time. Here, comes the need of
file handling in C.

File handling in C enables us to create, update, read, and delete the files stored on the local
file system through our C program. The following operations can be performed on a file.

o Creation of the new file

o Opening an existing file

o Reading from the file

o Writing to the file

o Deleting the file

Functions for file handling

There are many functions in the C library to open, read, write, search and close the file. A
list of file functions are given below:

No. Function Description

1 fopen() opens new or existing file

2 fprintf() write data into the file

3 fscanf() reads data from the file

4 fputc() writes a character into the file

5 fgetc() reads a character from file

6 fclose() closes the file

7 fseek() sets the file pointer to given position

8 fputw() writes an integer to file

9 fgetw() reads an integer from file

10 ftell() returns current position

11 rewind() sets the file pointer to the beginning of the file

Opening File: fopen()

We must open a file before it can be read, write, or update. The fopen() function is used to
open a file. The syntax of the fopen() is given below.

FILE *fopen(const char * filename, const char * mode);

The fopen() function accepts two parameters:

o The file name (string). If the file is stored at some specific location, then we must

mention the path at which the file is stored. For example, a file name can be

like "c://some_folder/some_file.ext".

o The mode in which the file is to be opened. It is a string.

We can use one of the following modes in the fopen() function.

Mode Description

r opens a text file in read mode

w opens a text file in write mode

a opens a text file in append mode

r+ opens a text file in read and write mode

w+ opens a text file in read and write mode

a+ opens a text file in read and write mode

rb opens a binary file in read mode

wb opens a binary file in write mode

ab opens a binary file in append mode

rb+ opens a binary file in read and write mode

wb+ opens a binary file in read and write mode

ab+ opens a binary file in read and write mode

The fopen function works in the following way.

o Firstly, It searches the file to be opened.

o Then, it loads the file from the disk and place it into the buffer. The buffer is used to

provide efficiency for the read operations.

o It sets up a character pointer which points to the first character of the file.

Consider the following example which opens a file in write mode.

#include<stdio.h>

void main()

{

FILE *fp ;

char ch ;

fp = fopen("file_handle.c","r") ;

while (1)

{

ch = fgetc (fp) ;

if (ch == EOF)

break ;

printf("%c",ch) ;

}

fclose (fp) ;

}

Output

The content of the file will be printed.

#include;

void main()

{

FILE *fp; // file pointer

char ch;

fp = fopen("file_handle.c","r");

while (1)

{

ch = fgetc (fp); //Each character of the file is read and stored in the

character file.

if (ch == EOF)

break;

printf("%c",ch);

}

fclose (fp);

}

Closing File: fclose()

The fclose() function is used to close a file. The file must be closed after performing all the

operations on it. The syntax of fclose() function is given below:

int fclose(FILE *fp);

C fprintf() and fscanf()

Writing File : fprintf() function

The fprintf() function is used to write set of characters into file. It sends formatted output to
a stream.

Syntax:

int fprintf(FILE *stream, const char *format [, argument, ...])

Example:

#include <stdio.h>

main(){

 FILE *fp;

 fp = fopen("file.txt", "w");//opening file

 fprintf(fp, "Hello file by fprintf...\n");//writing data into file

 fclose(fp);//closing file

}

Reading File : fscanf() function

The fscanf() function is used to read set of characters from file. It reads a word from the file
and returns EOF at the end of file.

Syntax:

int fscanf(FILE *stream, const char *format [, argument, ...])

Example:

#include <stdio.h>

main(){

 FILE *fp;

 char buff[255];//creating char array to store data of file

 fp = fopen("file.txt", "r");

 while(fscanf(fp, "%s", buff)!=EOF){

 printf("%s ", buff);

 }

 fclose(fp);

}

Output:

Hello file by fprintf...

C File Example: Storing employee information

Let's see a file handling example to store employee information as entered by user from
console. We are going to store id, name and salary of the employee.

#include <stdio.h>

void main()

{

 FILE *fptr;

 int id;

 char name[30];

 float salary;

 fptr = fopen("emp.txt", "w+");/* open for writing */

 if (fptr == NULL)

 {

 printf("File does not exists \n");

 return;

 }

 printf("Enter the id\n");

 scanf("%d", &id);

 fprintf(fptr, "Id= %d\n", id);

 printf("Enter the name \n");

 scanf("%s", name);

 fprintf(fptr, "Name= %s\n", name);

 printf("Enter the salary\n");

 scanf("%f", &salary);

 fprintf(fptr, "Salary= %.2f\n", salary);

 fclose(fptr);

}

Output:
 Enter the id
1

Enter the name

sonoo

Enter the salary

120000

Now open file from current directory. For windows operating system, go to TC\bin directory,

you will see emp.txt file. It will have following information.

emp.txt

Id= 1

Name= sonoo

Salary= 120000

C fputc() and fgetc()

Writing File : fputc() function

The fputc() function is used to write a single character into file. It outputs a character to a
stream.

Syntax:

int fputc(int c, FILE *stream)

Example:

#include <stdio.h>

main(){

 FILE *fp;

 fp = fopen("file1.txt", "w");//opening file

 fputc('a',fp);//writing single character into file

 fclose(fp);//closing file

}

file1.txt

a

Reading File : fgetc() function

The fgetc() function returns a single character from the file. It gets a character from the
stream. It returns EOF at the end of file.

Syntax:

int fgetc(FILE *stream)

Example:

#include<stdio.h>

#include<conio.h>

void main(){

FILE *fp;

char c;

clrscr();

fp=fopen("myfile.txt","r");

while((c=fgetc(fp))!=EOF){

printf("%c",c);

}

fclose(fp);

getch();

}

myfile.txt

this is simple text message

C fputs() and fgets()

The fputs() and fgets() in C programming are used to write and read string from stream.

Let's see examples of writing and reading file using fgets() and fgets() functions.

Writing File : fputs() function

The fputs() function writes a line of characters into file. It outputs string to a stream.

Syntax:

int fputs(const char *s, FILE *stream)

Example:

#include<stdio.h>

#include<conio.h>

void main(){

FILE *fp;

clrscr();

fp=fopen("myfile2.txt","w");

fputs("hello c programming",fp);

fclose(fp);

getch();

}

myfile2.txt

hello c programming

Reading File : fgets() function

The fgets() function reads a line of characters from file. It gets string from a stream.

Syntax:

char* fgets(char *s, int n, FILE *stream)

Example:

#include<stdio.h>

#include<conio.h>

void main(){

FILE *fp;

char text[300];

clrscr();

fp=fopen("myfile2.txt","r");

printf("%s",fgets(text,200,fp));

fclose(fp);

getch();

}

Output:

hello c programming

C fseek() function

The fseek() function is used to set the file pointer to the specified offset. It is used to write

data into file at desired location.

Syntax:

int fseek(FILE *stream, long int offset, int whence)

There are 3 constants used in the fseek() function for whence: SEEK_SET, SEEK_CUR and
SEEK_END.

Example:

#include <stdio.h>

void main(){

 FILE *fp;

 fp = fopen("myfile.txt","w+");

 fputs("This is javatpoint", fp);

 fseek(fp, 7, SEEK_SET);

 fputs("sonoo jaiswal", fp);

 fclose(fp);

}

myfile.txt

This is sonoo jaiswal

C rewind() function

The rewind() function sets the file pointer at the beginning of the stream. It is useful if you have

to use stream many times.

Syntax:

void rewind(FILE *stream)

Example:

File: file.txt

this is a simple text

File: rewind.c

#include<stdio.h>

#include<conio.h>

void main(){

FILE *fp;

char c;

clrscr();

fp=fopen("file.txt","r");

while((c=fgetc(fp))!=EOF){

printf("%c",c);

}

rewind(fp);//moves the file pointer at beginning of the file

while((c=fgetc(fp))!=EOF){

printf("%c",c);

}

fclose(fp);

getch();

}

Output:

this is a simple textthis is a simple text

As you can see, rewind() function moves the file pointer at beginning of the file that is why
"this is simple text" is printed 2 times. If you don't call rewind() function, "this is simple
text" will be printed only once.

C ftell() function

The ftell() function returns the current file position of the specified stream. We can use

ftell() function to get the total size of a file after moving file pointer at the end of file. We
can use SEEK_END constant to move the file pointer at the end of file.

Syntax:

long int ftell(FILE *stream)

Example:

File: ftell.c

#include <stdio.h>

#include <conio.h>

void main (){

 FILE *fp;

 int length;

 clrscr();

 fp = fopen("file.txt", "r");

 fseek(fp, 0, SEEK_END);

 length = ftell(fp);

 fclose(fp);

 printf("Size of file: %d bytes", length);

 getch();

}

Output:

Size of file: 21 bytes

C Preprocessor Directives

The C preprocessor is a micro processor that is used by compiler to transform your code

before compilation. It is called micro preprocessor because it allows us to add macros.

All preprocessor directives starts with hash # symbol.

Let's see a list of preprocessor directives.

o #include

o #define

o #undef

o #ifdef

o #ifndef

o #if

o #else

o #elif

o #endif

o #error

o #pragma

C Macros

A macro is a segment of code which is replaced by the value of macro. Macro is defined by

#define directive. There are two types of macros:

1. Object-like Macros

2. Function-like Macros

Object-like Macros

The object-like macro is an identifier that is replaced by value. It is widely used to represent
numeric constants. For example:

#define PI 3.14

Here, PI is the macro name which will be replaced by the value 3.14.

Function-like Macros

The function-like macro looks like function call. For example:

#define MIN(a,b) ((a)<(b)?(a):(b))

Here, MIN is the macro name.

C Predefined Macros

ANSI C defines many predefined macros that can be used in c program.

No. Macro Description

1 _DATE_ represents current date in "MMM DD YYYY" format.

2 _TIME_ represents current time in "HH:MM:SS" format.

3 _FILE_ represents current file name.

4 _LINE_ represents current line number.

5 _STDC_ It is defined as 1 when compiler complies with the ANSI standard.

C predefined macros example

File: simple.c

#include<stdio.h>

 int main(){

 printf("File :%s\n", __FILE__);

 printf("Date :%s\n", __DATE__);

 printf("Time :%s\n", __TIME__);

 printf("Line :%d\n", __LINE__);

 printf("STDC :%d\n", __STDC__);

 return 0;

 }

Output:

File :simple.c

Date :Dec 6 2015

Time :12:28:46

Line :6

STDC :1

C #include

The #include preprocessor directive is used to paste code of given file into current file. It is

used include system-defined and user-defined header files. If included file is not found,
compiler renders error.

By the use of #include directive, we provide information to the preprocessor where to look
for the header files. There are two variants to use #include directive.

1. #include <filename>

2. #include "filename"

The #include <filename> tells the compiler to look for the directory where system header
files are held. In UNIX, it is \usr\include directory.

The #include "filename" tells the compiler to look in the current directory from where
program is running.

#include directive example

Let's see a simple example of #include directive. In this program, we are including stdio.h

file because printf() function is defined in this file.

#include<stdio.h>

 int main(){

 printf("Hello C");

 return 0;

 }

Output:

Hello C

#include notes:

Note 1: In #include directive, comments are not recognized. So in case of #include
<a//b>, a//b is treated as filename.

Note 2: In #include directive, backslash is considered as normal text not escape sequence.

So in case of #include <a\nb>, a\nb is treated as filename.

Note 3: You can use only comment after filename otherwise it will give error.

C #define

The #define preprocessor directive is used to define constant or micro substitution. It can

use any basic data type.

Syntax:

#define token value

Let's see an example of #define to define a constant.

#include <stdio.h>

#define PI 3.14

main() {

 printf("%f",PI);

}

Output:

3.140000

et's see an example of #define to create a macro.

#include <stdio.h>

#define MIN(a,b) ((a)<(b)?(a):(b))

void main() {

 printf("Minimum between 10 and 20 is: %d\n", MIN(10,20));

}

Output:

Minimum between 10 and 20 is: 10

C #undef

The #undef preprocessor directive is used to undefine the constant or macro defined by

#define.

Syntax:

#undef token

Let's see a simple example to define and undefine a constant.

#include <stdio.h>

#define PI 3.14

#undef PI

main() {

 printf("%f",PI);

}

Output:

Compile Time Error: 'PI' undeclared

The #undef directive is used to define the preprocessor constant to a limited scope so that
you can declare constant again.

Let's see an example where we are defining and undefining number variable. But before
being undefined, it was used by square variable.

#include <stdio.h>

#define number 15

int square=number*number;

#undef number

main() {

 printf("%d",square);

}

Output:

225

C #ifdef

The #ifdef preprocessor directive checks if macro is defined by #define. If yes, it executes

the code otherwise #else code is executed, if present.

Syntax:

#ifdef MACRO

//code

#endif

Syntax with #else:

#ifdef MACRO

//successful code

#else

//else code

#endif

C #ifdef example

Let's see a simple example to use #ifdef preprocessor directive.

#include <stdio.h>

#include <conio.h>

#define NOINPUT

void main() {

int a=0;

#ifdef NOINPUT

a=2;

#else

printf("Enter a:");

scanf("%d", &a);

#endif

printf("Value of a: %d\n", a);

getch();

}

Output:

Value of a: 2

But, if you don't define NOINPUT, it will ask user to enter a number.

#include <stdio.h>

#include <conio.h>

void main() {

int a=0;

#ifdef NOINPUT

a=2;

#else

printf("Enter a:");

scanf("%d", &a);

#endif

printf("Value of a: %d\n", a);

getch();

}

Output:

Enter a:5

Value of a: 5

C #ifndef

The #ifndef preprocessor directive checks if macro is not defined by #define. If yes, it

executes the code otherwise #else code is executed, if present.

Syntax:

#ifndef MACRO

//code

#endif

Syntax with #else:

#ifndef MACRO

//successful code

#else

//else code

#endif

C #ifndef example

Let's see a simple example to use #ifndef preprocessor directive.

#include <stdio.h>

#include <conio.h>

#define INPUT

void main() {

int a=0;

#ifndef INPUT

a=2;

#else

printf("Enter a:");

scanf("%d", &a);

#endif

printf("Value of a: %d\n", a);

getch();

}

Output:

Enter a:5

Value of a: 5

But, if you don't define INPUT, it will execute the code of #ifndef.

#include <stdio.h>

#include <conio.h>

void main() {

int a=0;

#ifndef INPUT

a=2;

#else

printf("Enter a:");

scanf("%d", &a);

#endif

printf("Value of a: %d\n", a);

getch();

}

Output:

Value of a: 2

C #if

The #if preprocessor directive evaluates the expression or condition. If condition is true, it

executes the code otherwise #elseif or #else or #endif code is executed.

Syntax:

#if expression

//code

#endif

Syntax with #else:

#if expression

//if code

#else

//else code

#endif

Syntax with #elif and #else:

#if expression

//if code

#elif expression

//elif code

#else

//else code

#endif

C #if example

Let's see a simple example to use #if preprocessor directive.

#include <stdio.h>

#include <conio.h>

#define NUMBER 0

void main() {

#if (NUMBER==0)

printf("Value of Number is: %d",NUMBER);

#endif

getch();

}

Output:

Value of Number is: 0

Let's see another example to understand the #if directive clearly.

#include <stdio.h>

#include <conio.h>

#define NUMBER 1

void main() {

clrscr();

#if (NUMBER==0)

printf("1 Value of Number is: %d",NUMBER);

#endif

#if (NUMBER==1)

printf("2 Value of Number is: %d",NUMBER);

#endif

getch();

}

Output:

2 Value of Number is: 1

C #else

The #else preprocessor directive evaluates the expression or condition if condition of #if is

false. It can be used with #if, #elif, #ifdef and #ifndef directives.

Syntax:

#if expression

//if code

#else

//else code

#endif

Syntax with #elif:

#if expression

//if code

#elif expression

//elif code

#else

//else code

#endif

C #else example

Let's see a simple example to use #else preprocessor directive.

#include <stdio.h>

#include <conio.h>

#define NUMBER 1

void main() {

#if NUMBER==0

printf("Value of Number is: %d",NUMBER);

#else

print("Value of Number is non-zero");

#endif

getch();

}

Output:

Value of Number is non-zero

C #error

The #error preprocessor directive indicates error. The compiler gives fatal error if #error

directive is found and skips further compilation process.

C #error example

Let's see a simple example to use #error preprocessor directive.

#include<stdio.h>

#ifndef __MATH_H

#error First include then compile

#else

void main(){

 float a;

 a=sqrt(7);

 printf("%f",a);

}

#endif

Output:

Compile Time Error: First include then compile

But, if you include math.h, it does not gives error.

#include<stdio.h>

#include<math.h>

#ifndef __MATH_H

#error First include then compile

#else

void main(){

 float a;

 a=sqrt(7);

 printf("%f",a);

}

#endif

Output:

2.645751

C #pragma

The #pragma preprocessor directive is used to provide additional information to the

compiler. The #pragma directive is used by the compiler to offer machine or operating-
system feature.

Syntax:

#pragma token

Different compilers can provide different usage of #pragma directive.

The turbo C++ compiler supports following #pragma directives.

#pragma argsused

#pragma exit

#pragma hdrfile

#pragma hdrstop

#pragma inline

#pragma option

#pragma saveregs

#pragma startup

#pragma warn

Let's see a simple example to use #pragma preprocessor directive.

#include<stdio.h>

#include<conio.h>

void func() ;

#pragma startup func

#pragma exit func

void main(){

printf("\nI am in main");

getch();

}

void func(){

printf("\nI am in func");

getch();

}

Output:

I am in func

I am in main

I am in func

Command Line Arguments in C

The arguments passed from command line are called command line arguments. These

arguments are handled by main() function.

To support command line argument, you need to change the structure of main() function as
given below.

int main(int argc, char *argv[])

Here, argc counts the number of arguments. It counts the file name as the first argument.

The argv[] contains the total number of arguments. The first argument is the file name
always.

Example

Let's see the example of command line arguments where we are passing one argument with
file name.

#include <stdio.h>

void main(int argc, char *argv[]) {

 printf("Program name is: %s\n", argv[0]);

 if(argc < 2){

 printf("No argument passed through command line.\n");

 }

 else{

 printf("First argument is: %s\n", argv[1]);

 }

}

Run this program as follows in Linux:

./program hello

Run this program as follows in Windows from command line:

program.exe hello

Output:

Program name is: program

First argument is: hello

If you pass many arguments, it will print only one.

./program hello c how r u

Output:

Program name is: program

First argument is: hello

But if you pass many arguments within double quote, all arguments will be treated as a

single argument only.

./program "hello c how r u"

Output:

Program name is: program

First argument is: hello c how r u

You can write your program to print all the arguments. In this program, we are printing only
argv[1], that is why it is printing only one argument.

C Strings

The string can be defined as the one-dimensional array of characters terminated by a null

('\0'). The character array or the string is used to manipulate text such as word or
sentences. Each character in the array occupies one byte of memory, and the last character
must always be 0. The termination character ('\0') is important in a string since it is the
only way to identify where the string ends. When we define a string as char s[10], the
character s[10] is implicitly initialized with the null in the memory.

There are two ways to declare a string in c language.

1. By char array

2. By string literal

Let's see the example of declaring string by char array in C language.

char ch[10]={'j', 'a', 'v', 'a', 't', 'p', 'o', 'i', 'n', 't', '\0'};

As we know, array index starts from 0, so it will be represented as in the figure given below.

While declaring string, size is not mandatory. So we can write the above code as given
below:

char ch[]={'j', 'a', 'v', 'a', 't', 'p', 'o', 'i', 'n', 't', '\0'};

We can also define the string by the string literal in C language. For example:

char ch[]="javatpoint";

In such case, '\0' will be appended at the end of the string by the compiler.

Difference between char array and string literal

There are two main differences between char array and literal.

o We need to add the null character '\0' at the end of the array by ourself whereas, it

is appended internally by the compiler in the case of the character array.

o The string literal cannot be reassigned to another set of characters whereas, we can

reassign the characters of the array.

String Example in C

Let's see a simple example where a string is declared and being printed. The '%s' is used as

a format specifier for the string in c language.

#include<stdio.h>

#include <string.h>

int main(){

 char ch[11]={'j', 'a', 'v', 'a', 't', 'p', 'o', 'i', 'n', 't', '\0'};

 char ch2[11]="javatpoint";

 printf("Char Array Value is: %s\n", ch);

 printf("String Literal Value is: %s\n", ch2);

 return 0;

}

Output:

Char Array Value is: javatpoint

String Literal Value is: javatpoint

Traversing String

Traversing the string is one of the most important aspects in any of the programming
languages. We may need to manipulate a very large text which can be done by traversing

the text. Traversing string is somewhat different from the traversing an integer array. We
need to know the length of the array to traverse an integer array, whereas we may use the
null character in the case of string to identify the end the string and terminate the loop.

Hence, there are two ways to traverse a string.

o By using the length of string

o By using the null character.

Let's discuss each one of them.

Using the length of string

Let's see an example of counting the number of vowels in a string.

#include<stdio.h>

void main ()

{

 char s[11] = "javatpoint";

 int i = 0;

 int count = 0;

 while(i<11)

 {

 if(s[i]=='a' || s[i] == 'e' || s[i] == 'i' || s[i] == 'u' || s[i] == 'o')

 {

 count ++;

 }

 i++;

 }

 printf("The number of vowels %d",count);

}

Output
The number of vowels 4

Using the null character

Let's see the same example of counting the number of vowels by using the null character.

#include<stdio.h>

void main ()

{

 char s[11] = "javatpoint";

 int i = 0;

 int count = 0;

 while(s[i] != NULL)

 {

 if(s[i]=='a' || s[i] == 'e' || s[i] == 'i' || s[i] == 'u' || s[i] == 'o')

 {

 count ++;

 }

 i++;

 }

 printf("The number of vowels %d",count);

}

Output
The number of vowels 4

Accepting string as the input

Till now, we have used scanf to accept the input from the user. However, it can also be used

in the case of strings but with a different scenario. Consider the below code which stores the
string while space is encountered.

#include<stdio.h>

void main ()

{

 char s[20];

 printf("Enter the string?");

 scanf("%s",s);

 printf("You entered %s",s);

}
Enter the string?javatpoint is the best

You entered javatpoint

It is clear from the output that, the above code will not work for space separated strings. To
make this code working for the space separated strings, the minor changed required in the
scanf function, i.e., instead of writing scanf("%s",s), we must write: scanf("%[^\n]s",s)
which instructs the compiler to store the string s while the new line (\n) is encountered.

Let's consider the following example to store the space-separated strings.

#include<stdio.h>

void main ()

{

 char s[20];

 printf("Enter the string?");

 scanf("%[^\n]s",s);

 printf("You entered %s",s);

}
Enter the string?javatpoint is the best

You entered javatpoint is the best

Here we must also notice that we do not need to use address of (&) operator in scanf to
store a string since string s is an array of characters and the name of the array, i.e., s
indicates the base address of the string (character array) therefore we need not use & with
it.

Some important points

However, there are the following points which must be noticed while entering the strings by
using scanf.

o The compiler doesn't perform bounds checking on the character array. Hence, there

can be a case where the length of the string can exceed the dimension of the

character array which may always overwrite some important data.

o Instead of using scanf, we may use gets() which is an inbuilt function defined in a

header file string.h. The gets() is capable of receiving only one string at a time.

Pointers with strings

We have used pointers with the array, functions, and primitive data types so far. However,
pointers can be used to point to the strings. There are various advantages of using pointers
to point strings. Let us consider the following example to access the string via the pointer.

#include<stdio.h>

void main ()

{

 char s[11] = "javatpoint";

 char *p = s; // pointer p is pointing to string s.

 printf("%s",p); // the string javatpoint is printed if we print p.

}

Output
javatpoint

As we know that string is an array of characters, the pointers can be used in the same way
they were used with arrays. In the above example, p is declared as a pointer to the array of

characters s. P affects similar to s since s is the base address of the string and treated as a
pointer internally. However, we can not change the content of s or copy the content of s into
another string directly. For this purpose, we need to use the pointers to store the strings. In
the following example, we have shown the use of pointers to copy the content of a string

into another.

#include<stdio.h>

void main ()

{

 char *p = "hello javatpoint";

 printf("String p: %s\n",p);

 char *q;

 printf("copying the content of p into q...\n");

 q = p;

 printf("String q: %s\n",q);

}

Output
String p: hello javatpoint

copying the content of p into q...

String q: hello javatpoint

Once a string is defined, it cannot be reassigned to another set of characters. However,
using pointers, we can assign the set of characters to the string. Consider the following
example.

#include<stdio.h>

void main ()

{

 char *p = "hello javatpoint";

 printf("Before assigning: %s\n",p);

 p = "hello";

 printf("After assigning: %s\n",p);

}

Output
Before assigning: hello javatpoint

After assigning: hello

C gets() and puts() functions

The gets() and puts() are declared in the header file stdio.h. Both the functions are involved

in the input/output operations of the strings.

C gets() function

The gets() function enables the user to enter some characters followed by the enter key. All

the characters entered by the user get stored in a character array. The null character is
added to the array to make it a string. The gets() allows the user to enter the space-
separated strings. It returns the string entered by the user.

Declaration

char[] gets(char[]);

Reading string using gets()

#include<stdio.h>

void main ()

{

 char s[30];

 printf("Enter the string? ");

 gets(s);

 printf("You entered %s",s);

}

Output
Enter the string?

javatpoint is the best

You entered javatpoint is the best

The gets() function is risky to use since it doesn't perform any array bound checking and
keep reading the characters until the new line (enter) is encountered. It suffers from buffer

overflow, which can be avoided by using fgets(). The fgets() makes sure that not more than
the maximum limit of characters are read. Consider the following example.

#include<stdio.h>

void main()

{

 char str[20];

 printf("Enter the string? ");

 fgets(str, 20, stdin);

 printf("%s", str);

}

Output
Enter the string? javatpoint is the best website

javatpoint is the b

C puts() function

The puts() function is very much similar to printf() function. The puts() function is used to
print the string on the console which is previously read by using gets() or scanf() function.
The puts() function returns an integer value representing the number of characters being
printed on the console. Since, it prints an additional newline character with the string, which
moves the cursor to the new line on the console, the integer value returned by puts() will
always be equal to the number of characters present in the string plus 1.

Declaration

int puts(char[])

Let's see an example to read a string using gets() and print it on the console using puts().

#include<stdio.h>

#include <string.h>

int main(){

char name[50];

printf("Enter your name: ");

gets(name); //reads string from user

printf("Your name is: ");

puts(name); //displays string

return 0;

}

Output:
Enter your name: Sonoo Jaiswal

Your name is: Sonoo Jaiswal

C String Functions

There are many important string functions defined in "string.h" library.

No. Function Description

1 strlen(string_name) returns the length of string name

2 strcpy(destination, source) copies the contents of source string to
destination string.

3 strcat(first_string, second_string) concats or joins first string with second string.
The result of the string is stored in first string.

4 strcmp(first_string, second_string) compares the first string with second string. If
both strings are same, it returns 0.

5 strrev(string) returns reverse string.

6 strlwr(string) returns string characters in lowercase.

7 strupr(string) returns string characters in uppercase.

C String Length: strlen() function

The strlen() function returns the length of the given string. It doesn't count null character
'\0'.

#include<stdio.h>

#include <string.h>

int main(){

char ch[20]={'j', 'a', 'v', 'a', 't', 'p', 'o', 'i', 'n', 't', '\0'};

 printf("Length of string is: %d",strlen(ch));

 return 0;

}

Output:

Length of string is: 10

https://www.javatpoint.com/c-strlen
https://www.javatpoint.com/c-strcpy
https://www.javatpoint.com/c-strcat
https://www.javatpoint.com/c-strcmp
https://www.javatpoint.com/c-strrev
https://www.javatpoint.com/c-strlwr
https://www.javatpoint.com/c-strupr

C Copy String: strcpy()

The strcpy(destination, source) function copies the source string in destination.

#include<stdio.h>

#include <string.h>

int main(){

 char ch[20]={'j', 'a', 'v', 'a', 't', 'p', 'o', 'i', 'n', 't', '\0'};

 char ch2[20];

 strcpy(ch2,ch);

 printf("Value of second string is: %s",ch2);

 return 0;

}

Output:

Value of second string is: javatpoint

C String Concatenation: strcat()

The strcat(first_string, second_string) function concatenates two strings and result is
returned to first_string.

#include<stdio.h>

#include <string.h>

int main(){

 char ch[10]={'h', 'e', 'l', 'l', 'o', '\0'};

 char ch2[10]={'c', '\0'};

 strcat(ch,ch2);

 printf("Value of first string is: %s",ch);

 return 0;

}

Output:

Value of first string is: helloc

C Compare String: strcmp()

The strcmp(first_string, second_string) function compares two string and returns 0 if both

strings are equal.

Here, we are using gets() function which reads string from the console.

#include<stdio.h>

#include <string.h>

int main(){

 char str1[20],str2[20];

 printf("Enter 1st string: ");

 gets(str1);//reads string from console

 printf("Enter 2nd string: ");

 gets(str2);

 if(strcmp(str1,str2)==0)

 printf("Strings are equal");

 else

 printf("Strings are not equal");

 return 0;

}

Output:

Enter 1st string: hello

Enter 2nd string: hello

Strings are equal

C Reverse String: strrev()

The strrev(string) function returns reverse of the given string. Let's see a simple example of

strrev() function.

#include<stdio.h>

#include <string.h>

int main(){

 char str[20];

 printf("Enter string: ");

 gets(str);//reads string from console

 printf("String is: %s",str);

 printf("\nReverse String is: %s",strrev(str));

 return 0;

}

Output:

Enter string: javatpoint

String is: javatpoint

Reverse String is: tnioptavaj

C String Lowercase: strlwr()

The strlwr(string) function returns string characters in lowercase. Let's see a simple

example of strlwr() function.

#include<stdio.h>

#include <string.h>

int main(){

 char str[20];

 printf("Enter string: ");

 gets(str);//reads string from console

 printf("String is: %s",str);

 printf("\nLower String is: %s",strlwr(str));

 return 0;

}

Output:

Enter string: JAVATpoint

String is: JAVATpoint

Lower String is: javatpoint

C String Uppercase: strupr()

The strupr(string) function returns string characters in uppercase. Let's see a simple

example of strupr() function.

#include<stdio.h>

#include <string.h>

int main(){

 char str[20];

 printf("Enter string: ");

 gets(str);//reads string from console

 printf("String is: %s",str);

 printf("\nUpper String is: %s",strupr(str));

 return 0;

}

Output:

Enter string: javatpoint

String is: javatpoint

Upper String is: JAVATPOINT

C String strstr()

The strstr() function returns pointer to the first occurrence of the matched string in the

given string. It is used to return substring from first match till the last character.

Syntax:

char *strstr(const char *string, const char *match)

String strstr() parameters

string: It represents the full string from where substring will be searched.

match: It represents the substring to be searched in the full string.

String strstr() example

#include<stdio.h>

#include <string.h>

int main(){

 char str[100]="this is javatpoint with c and java";

 char *sub;

 sub=strstr(str,"java");

 printf("\nSubstring is: %s",sub);

 return 0;

}

Output:

javatpoint with c and java

C Math

C Programming allows us to perform mathematical operations through the functions defined

in <math.h> header file. The <math.h> header file contains various methods for
performing mathematical operations such as sqrt(), pow(), ceil(), floor() etc.

C Math Functions

There are various methods in math.h header file. The commonly used functions of math.h
header file are given below.

No. Function Description

1 ceil(number) rounds up the given number. It returns the integer value
which is greater than or equal to given number.

2 floor(number) rounds down the given number. It returns the integer value

which is less than or equal to given number.

3 sqrt(number) returns the square root of given number.

4 pow(base, exponent) returns the power of given number.

5 abs(number) returns the absolute value of given number.

C Math Example

Let's see a simple example of math functions found in math.h header file.

#include<stdio.h>

#include <math.h>

int main(){

printf("\n%f",ceil(3.6));

printf("\n%f",ceil(3.3));

printf("\n%f",floor(3.6));

printf("\n%f",floor(3.2));

printf("\n%f",sqrt(16));

printf("\n%f",sqrt(7));

printf("\n%f",pow(2,4));

printf("\n%f",pow(3,3));

printf("\n%d",abs(-12));

 return 0;

}

Output:

4.000000

4.000000

3.000000

3.000000

4.000000

2.645751

16.000000

27.000000

12

C - Error Handling

As such, C programming does not provide direct support for error handling but being a

system programming language, it provides you access at lower level in the form of return
values. Most of the C or even Unix function calls return -1 or NULL in case of any error and
set an error code errno. It is set as a global variable and indicates an error occurred during
any function call. You can find various error codes defined in <error.h> header file.

So a C programmer can check the returned values and can take appropriate action

depending on the return value. It is a good practice, to set errno to 0 at the time of
initializing a program. A value of 0 indicates that there is no error in the program.

errno, perror(). and strerror()

The C programming language provides perror() and strerror() functions which can be used

to display the text message associated with errno.

The perror() function displays the string you pass to it, followed by a colon, a space, and
then the textual representation of the current errno value.

The strerror() function, which returns a pointer to the textual representation of the current
errno value.

Let's try to simulate an error condition and try to open a file which does not exist. Here I'm
using both the functions to show the usage, but you can use one or more ways of printing
your errors. Second important point to note is that you should use stderr file stream to
output all the errors.

#include <stdio.h>

#include <errno.h>

#include <string.h>

extern int errno ;

int main () {

 FILE * pf;

 int errnum;

 pf = fopen ("unexist.txt", "rb");

 if (pf == NULL) {

 errnum = errno;

 fprintf(stderr, "Value of errno: %d\n", errno);

 perror("Error printed by perror");

 fprintf(stderr, "Error opening file: %s\n", strerror(errnum

));

 } else {

 fclose (pf);

 }

 return 0;

}

When the above code is compiled and executed, it produces the following result −

Value of errno: 2

Error printed by perror: No such file or directory

Error opening file: No such file or directory

Divide by Zero Errors

It is a common problem that at the time of dividing any number, programmers do not check
if a divisor is zero and finally it creates a runtime error.

The code below fixes this by checking if the divisor is zero before dividing –

#include <stdio.h>

#include <stdlib.h>

main() {

 int dividend = 20;

 int divisor = 0;

 int quotient;

 if(divisor == 0){

 fprintf(stderr, "Division by zero! Exiting...\n");

 exit(-1);

 }

 quotient = dividend / divisor;

 fprintf(stderr, "Value of quotient : %d\n", quotient);

 exit(0);

}

When the above code is compiled and executed, it produces the following result −

Division by zero! Exiting...

Program Exit Status

It is a common practice to exit with a value of EXIT_SUCCESS in case of program coming

out after a successful operation. Here, EXIT_SUCCESS is a macro and it is defined as 0.

If you have an error condition in your program and you are coming out then you should exit
with a status EXIT_FAILURE which is defined as -1. So let's write above program as follows
−

#include <stdio.h>

#include <stdlib.h>

main() {

 int dividend = 20;

 int divisor = 5;

 int quotient;

 if(divisor == 0) {

 fprintf(stderr, "Division by zero! Exiting...\n");

 exit(EXIT_FAILURE);

 }

 quotient = dividend / divisor;

 fprintf(stderr, "Value of quotient : %d\n", quotient);

 exit(EXIT_SUCCESS);

}

When the above code is compiled and executed, it produces the following result −

Value of quotient : 4

Searching and Sorting Techniques

Searching Technique

1. Linear Search

2. Binary Search

Linear Search

This is the simplest searching technique where each element is compared with the element

to be searched.

 Start from the leftmost element of arr[] and one by one compare x with each
element of arr[]

 If x matches with an element, return the index.
 If x doesn’t match with any of elements, return -1

// C++ code to linearly search x in arr[]. If x

// is present then return its location, otherwise

// return -1

#include <stdio.h>

int search(int arr[], int n, int x)

{

 int i;

 for (i = 0; i < n; i++)

 if (arr[i] == x)

 return i;

 return -1;

}

int main(void)

{

 int arr[] = { 2, 3, 4, 10, 40 };

 int x = 10;

 int n = sizeof(arr) / sizeof(arr[0]);

 int result = search(arr, n, x);

 (result == -1) ? printf("Element is not present in array")

 : printf("Element is present at index %d",

 result);

 return 0;

}

Binary Search

In computer science, a binary search or half-interval search algorithm finds the position of a

target value within a sorted array. The binary search algorithm can be classified as a
dichotomies divide-and-conquer search algorithm and executes in logarithmic time.

Pictorial presentation - Binary search algorithm

Code for Binary Search

#include<stdio.h>

 void main()

 {

 int arra[100],i,n,x,f,l,m,flag=0;

 printf("Input no. of elements in an array\n");

 scanf("%d",&n);

 printf("Input %d value in ascending order\n",n);

 for(i=0;i<n;i++)

 scanf("%d",&arra[i]);

 printf("Input the value to be search : ");

 scanf("%d",&x);

 /* Binary Search logic */

 f=0;l=n-1;

 while(f<=l)

 {

 m=(f+l)/2;

 if(x==arra[m])

 {

 flag=1;

 break;

 }

 else if(x<arra[m])

 l=m-1;

 else

 f=m+1;

 }

 if(flag==0)

 printf("%d value not found\n",x);

 else

 printf("%d value found at %d position\n",x,m);

 }

Sorting Techniques

Arranging the elements in ascending or descending order is called as Sorting

Selection Sort

The selection sort algorithm sorts an array by repeatedly finding the minimum element
(considering ascending order) from unsorted part and putting it at the beginning. The

algorithm maintains two subarrays in a given array.

1) The subarray which is already sorted.
2) Remaining subarray which is unsorted.

In every iteration of selection sort, the minimum element (considering ascending order)
from the unsorted subarray is picked and moved to the sorted subarray.

 Note:

a) To find maximum of elements

b) To swap two elements

arr[] = 64 25 12 22 11

// Find the minimum element in arr[0...4]

// and place it at beginning

11 25 12 22 64

// Find the minimum element in arr[1...4]
// and place it at beginning of arr[1...4]
11 12 25 22 64

// Find the minimum element in arr[2...4]
// and place it at beginning of arr[2...4]
11 12 22 25 64

// Find the minimum element in arr[3...4]
// and place it at beginning of arr[3...4]
11 12 22 25 64

Pictorial presentation - Selection search algorithm :

Sample C Code:

#include <stdio.h>

 int main()

 {

 int arr[10];

 int i, j, N, temp;

 /* function declaration */

 int find_max(int b[10], int k);

 void exchang(int b[10], int k);

 printf("\nInput no. of values in the array : N");

 scanf("%d",&N);

 printf("\nInput the elements one by one: ");

 for(i=0; i<N ; i++)

 {

 scanf("%d",&arr[i]);

 }

 /* Selection sorting begins */

 exchang(arr,N);

 printf("Sorted array :\n");

 for(i=0; i< N ; i++)

 {

 printf("%d\n",arr[i]);

 }

}

/* function to find the maximum value */

 int find_max(int b[10], int k)

 {

 int max=0,j;

 for(j = 1; j <= k; j++)

 {

 if (b[j] > b[max])

 {

 max = j;

 }

 }

 return(max);

 }

 void exchang(int b[10],int k)

 {

 int temp, big, j;

 for (j=k-1; j>=1; j--)

 {

 big = find_max(b,j);

 temp = b[big];

 b[big] = b[j];

 b[j] = temp;

 }

 return ;

 }

Bubble Sort

Bubble Sort works by repeatedly swapping the adjacent elements if they are in wrong order.

Pictorial presentation - Bubble sort algorithm:

Example:
First Pass:
(5 1 4 2 8) –> (1 5 4 2 8), Here, algorithm compares the first two elements, and
swaps since 5 > 1.
(1 5 4 2 8) –> (1 4 5 2 8), Swap since 5 > 4
(1 4 5 2 8) –> (1 4 2 5 8), Swap since 5 > 2
(1 4 2 5 8) –> (1 4 2 5 8), Now, since these elements are already in order (8 > 5),
algorithm does not swap them.
Second Pass:
(1 4 2 5 8) –> (1 4 2 5 8)
(1 4 2 5 8) –> (1 2 4 5 8), Swap since 4 > 2
(1 2 4 5 8) –> (1 2 4 5 8)
(1 2 4 5 8) –> (1 2 4 5 8)
Now, the array is already sorted, but our algorithm does not know if it is completed. The
algorithm needs one whole pass without any swap to know it is sorted.

Third Pass:
(1 2 4 5 8) –> (1 2 4 5 8)
(1 2 4 5 8) –> (1 2 4 5 8)
(1 2 4 5 8) –> (1 2 4 5 8)
(1 2 4 5 8) –> (1 2 4 5 8)

Sample C Code:

#include <stdio.h>

 void bubble_sort (int *x, int n) {

 int i, t, j = n, s = 1;

 while (s) {

 s = 0;

 for (i = 1; i < j; i++) {

 if (x[i] < x[i - 1]) {

 t = x[i];

 x[i] = x[i - 1];

 x[i - 1] = t;

 s = 1;

 }

 }

 j--;

 }

}

int main () {

 int x[] = {15, 56, 12, -21, 1, 659, 3, 83, 51, 3, 135, 0};

 int n = sizeof x / sizeof x[0];

 int i;

 for (i = 0; i < n; i++)

 printf("%d%s", x[i], i == n - 1 ? "\n" : " ");

 bubble_sort(x, n);

 for (i = 0; i < n; i++)

 printf("%d%s", x[i], i == n - 1 ? "\n" : " ");

 return 0;

}

Insertion sort

Insertion sort is a simple sorting algorithm that builds the final sorted array (or list) one

item at a time. It is much less efficient on large lists than other algorithms such as
quicksort, heapsort, or merge sort.

Pictorial presentation - Insertion search algorithm:

Another Example:
12, 11, 13, 5, 6
Let us loop for i = 1 (second element of the array) to 4 (last element of the array)

i = 1. Since 11 is smaller than 12, move 12 and insert 11 before 12
11, 12, 13, 5, 6
i = 2. 13 will remain at its position as all elements in A[0..I-1] are smaller than 13
11, 12, 13, 5, 6
i = 3. 5 will move to the beginning and all other elements from 11 to 13 will move one

position ahead of their current position.
5, 11, 12, 13, 6

i = 4. 6 will move to position after 5, and elements from 11 to 13 will move one position

ahead of their current position.
5, 6, 11, 12, 13

Sample C Code:

#include <bits/stdc++.h>

using namespace std;

/* Function to sort an array using insertion sort*/

void insertionSort(int arr[], int n)

{

 int i, key, j;

 for (i = 1; i < n; i++)

 {

 key = arr[i];

 j = i - 1;

 /* Move elements of arr[0..i-1], that are

 greater than key, to one position ahead

 of their current position */

 while (j >= 0 && arr[j] > key)

 {

 arr[j + 1] = arr[j];

 j = j - 1;

 }

 arr[j + 1] = key;

 }

}

// A utility function to print an array of size n

void printArray(int arr[], int n)

{

 int i;

 for (i = 0; i < n; i++)

 cout << arr[i] << " ";

 cout << endl;

}

/* Driver code */

int main()

{

 int arr[] = { 12, 11, 13, 5, 6 };

 int n = sizeof(arr) / sizeof(arr[0]);

 insertionSort(arr, n);

 printArray(arr, n);

 return 0;

}

Merge sort

Like QuickSort, Merge Sort is a Divide and Conquer algorithm. It divides input array in two

halves, calls itself for the two halves and then merges the two sorted halves. The merge()
function is used for merging two halves. The merge(arr, l, m, r) is key process that
assumes that arr[l..m] and arr[m+1..r] are sorted and merges the two sorted sub-arrays
into one. See following C implementation for details.

Pictorial presentation - Merge search algorithm :

https://www.geeksforgeeks.org/quick-sort/
https://www.geeksforgeeks.org/divide-and-conquer-introduction/

MergeSort(arr[], l, r)
If r > l
 1. Find the middle point to divide the array into two halves:
 middle m = (l+r)/2
 2. Call mergeSort for first half:
 Call mergeSort(arr, l, m)
 3. Call mergeSort for second half:
 Call mergeSort(arr, m+1, r)
 4. Merge the two halves sorted in step 2 and 3:
 Call merge(arr, l, m, r)

/* C program for Merge Sort */

#include<stdlib.h>

#include<stdio.h>

// Merges two subarrays of arr[].

// First subarray is arr[l..m]

// Second subarray is arr[m+1..r]

void merge(int arr[], int l, int m, int r)

{

 int i, j, k;

 int n1 = m - l + 1;

 int n2 = r - m;

 /* create temp arrays */

 int L[n1], R[n2];

 /* Copy data to temp arrays L[] and R[] */

 for (i = 0; i < n1; i++)

 L[i] = arr[l + i];

 for (j = 0; j < n2; j++)

 R[j] = arr[m + 1+ j];

 /* Merge the temp arrays back into arr[l..r]*/

 i = 0; // Initial index of first subarray

 j = 0; // Initial index of second subarray

 k = l; // Initial index of merged subarray

 while (i < n1 && j < n2)

 {

 if (L[i] <= R[j])

 {

 arr[k] = L[i];

 i++;

 }

 else

 {

 arr[k] = R[j];

 j++;

 }

 k++;

 }

 /* Copy the remaining elements of L[], if there

 are any */

 while (i < n1)

 {

 arr[k] = L[i];

 i++;

 k++;

 }

 /* Copy the remaining elements of R[], if there

 are any */

 while (j < n2)

 {

 arr[k] = R[j];

 j++;

 k++;

 }

}

/* l is for left index and r is right index of the

sub-array of arr to be sorted */

void mergeSort(int arr[], int l, int r)

{

 if (l < r)

 {

 // Same as (l+r)/2, but avoids overflow for

 // large l and h

 int m = l+(r-l)/2;

 // Sort first and second halves

 mergeSort(arr, l, m);

 mergeSort(arr, m+1, r);

 merge(arr, l, m, r);

 }

}

/* UTILITY FUNCTIONS */

/* Function to print an array */

void printArray(int A[], int size)

{

 int i;

 for (i=0; i < size; i++)

 printf("%d ", A[i]);

 printf("\n");

}

/* Driver program to test above functions */

int main()

{

 int arr[] = {12, 11, 13, 5, 6, 7};

 int arr_size = sizeof(arr)/sizeof(arr[0]);

 printf("Given array is \n");

 printArray(arr, arr_size);

 mergeSort(arr, 0, arr_size - 1);

 printf("\nSorted array is \n");

 printArray(arr, arr_size);

 return 0;

}

C Programs

C programs are frequently asked in the interview. These programs can be asked from

basics, array, string, pointer, linked list, file handling etc. Let's see the list of c programs.

1) Fibonacci Series

Write a c program to print fibonacci series without using recursion and using recursion.

Fibonacci Series in C: In case of fibonacci series, next number is the sum of previous two
numbers for example 0, 1, 1, 2, 3, 5, 8, 13, 21 etc. The first two numbers of fibonacci
series are 0 and 1.

There are two ways to write the fibonacci series program:

o Fibonacci Series without recursion

o Fibonacci Series using recursion

Fibonacci Series in C without recursion

Let's see the fibonacci series program in c without recursion.

#include<stdio.h>

int main()

{

 int n1=0,n2=1,n3,i,number;

 printf("Enter the number of elements:");

 scanf("%d",&number);

 printf("\n%d %d",n1,n2);//printing 0 and 1

 for(i=2;i<number;++i)//loop starts from 2 because 0 and 1 are already printed

 {

 n3=n1+n2;

 printf(" %d",n3);

 n1=n2;

 n2=n3;

 }

 return 0;

 }

Output:

Enter the number of elements:15

0 1 1 2 3 5 8 13 21 34 55 89 144 233 377

Fibonacci Series using recursion in C

Let's see the fibonacci series program in c using recursion.

#include<stdio.h>

 void printFibonacci(int n){

 static int n1=0,n2=1,n3;

 if(n>0){

 n3 = n1 + n2;

 n1 = n2;

 n2 = n3;

 printf("%d ",n3);

 printFibonacci(n-1);

 }

}

 int main(){

 int n;

 printf("Enter the number of elements: ");

 scanf("%d",&n);

 printf("Fibonacci Series: ");

 printf("%d %d ",0,1);

 printFibonacci(n-2);//n-2 because 2 numbers are already printed

 return 0;

 }

Output:

Enter the number of elements:15

0 1 1 2 3 5 8 13 21 34 55 89 144 233 377

2) Prime number

Write a c program to check prime number.

Prime number in C: Prime number is a number that is greater than 1 and divided by 1 or
itself. In other words, prime numbers can't be divided by other numbers than itself or 1. For
example 2, 3, 5, 7, 11, 13, 17, 19, 23.... are the prime numbers.

Note: Zero (0) and 1 are not considered as prime numbers. Two (2) is the only one even

prime number because all the numbers can be divided by 2.

Let's see the prime number program in C. In this c program, we will take an input from the
user and check whether the number is prime or not.

#include<stdio.h>

int main(){

int n,i,m=0,flag=0;

printf("Enter the number to check prime:");

scanf("%d",&n);

m=n/2;

for(i=2;i<=m;i++)

{

if(n%i==0)

{

printf("Number is not prime");

flag=1;

break;

}

}

if(flag==0)

printf("Number is prime");

return 0;

 }

Output:

Enter the number to check prime:56

Number is not prime

Enter the number to check prime:23

Number is prime

3) Palindrome number

Write a c program to check palindrome number.

Palindrome number in c: A palindrome number is a number that is same after reverse.
For example 121, 34543, 343, 131, 48984 are the palindrome numbers.

Palindrome number algorithm

o Get the number from user

o Hold the number in temporary variable

o Reverse the number

o Compare the temporary number with reversed number

o If both numbers are same, print palindrome number

o Else print not palindrome number

Let's see the palindrome program in C. In this c program, we will get an input from the user
and check whether number is palindrome or not.

#include<stdio.h>

int main()

{

int n,r,sum=0,temp;

printf("enter the number=");

scanf("%d",&n);

temp=n;

while(n>0)

{

r=n%10;

sum=(sum*10)+r;

n=n/10;

}

if(temp==sum)

printf("palindrome number ");

else

printf("not palindrome");

return 0;

}

Output:

enter the number=151

palindrome number

enter the number=5621

not palindrome number

4) Factorial

Write a c program to print factorial of a number.

Factorial Program in C: Factorial of n is the product of all positive descending integers.
Factorial of n is denoted by n!. For example:

5! = 5*4*3*2*1 = 120

3! = 3*2*1 = 6

Here, 5! is pronounced as "5 factorial", it is also called "5 bang" or "5 shriek".

The factorial is normally used in Combinations and Permutations (mathematics).

There are many ways to write the factorial program in c language. Let's see the 2 ways to

write the factorial program.

o Factorial Program using loop

o Factorial Program using recursion

Factorial Program using loop

Let's see the factorial Program using loop.

#include<stdio.h>

int main()

{

 int i,fact=1,number;

 printf("Enter a number: ");

 scanf("%d",&number);

 for(i=1;i<=number;i++){

 fact=fact*i;

 }

 printf("Factorial of %d is: %d",number,fact);

 return 0;

 }

Output:

Enter a number: 5

Factorial of 5 is: 120

Factorial Program using recursion in C

Let's see the factorial program in c using recursion.

#include<stdio.h>

long factorial(int n)

{

 if (n == 0)

 return 1;

 else

 return(n * factorial(n-1));

}

void main()

{

 int number;

 long fact;

 printf("Enter a number: ");

 scanf("%d", &number);

 fact = factorial(number);

 printf("Factorial of %d is %ld\n", number, fact);

 return 0;

}

Output:

Enter a number: 6

Factorial of 5 is: 720

5) Armstrong number

Write a c program to check armstrong number.

Before going to write the c program to check whether the number is Armstrong or not, let's
understand what is Armstrong number.

Armstrong number is a number that is equal to the sum of cubes of its digits. For example
0, 1, 153, 370, 371 and 407 are the Armstrong numbers.

Let's try to understand why 153 is an Armstrong number.

153 = (1*1*1)+(5*5*5)+(3*3*3)

where:

(1*1*1)=1

(5*5*5)=125

(3*3*3)=27

So:

1+125+27=153

Let's try to understand why 371 is an Armstrong number.

371 = (3*3*3)+(7*7*7)+(1*1*1)

where:

(3*3*3)=27

(7*7*7)=343

(1*1*1)=1

So:

27+343+1=371

Let's see the c program to check Armstrong Number in C.

#include<stdio.h>

 int main()

{

int n,r,sum=0,temp;

printf("enter the number=");

scanf("%d",&n);

temp=n;

while(n>0)

{

r=n%10;

sum=sum+(r*r*r);

https://www.javatpoint.com/armstrong-number-in-c

n=n/10;

}

if(temp==sum)

printf("armstrong number ");

else

printf("not armstrong number");

return 0;

}

Output:

enter the number=153

armstrong number

enter the number=5

not armstrong number

6) Sum of Digits

Write a c program to print sum of digits.

C program to sum each digit: We can write the sum of digits program in c language by the
help of loop and mathematical operation only.

Sum of digits algorithm

To get sum of each digits by c program, use the following algorithm:

o Step 1: Get number by user

o Step 2: Get the modulus/remainder of the number

o Step 3: sum the remainder of the number

o Step 4: Divide the number by 10

o Step 5: Repeat the step 2 while number is greater than 0.

Let's see the sum of digits program in C.

#include<stdio.h>

 int main()

{

int n,sum=0,m;

printf("Enter a number:");

scanf("%d",&n);

while(n>0)

{

m=n%10;

sum=sum+m;

n=n/10;

}

printf("Sum is=%d",sum);

return 0;

}

Output:

Enter a number:654

Sum is=15

Enter a number:123

Sum is=6

7) Reverse Number

Write a c program to reverse given number.

We can reverse a number in c using loop and arithmetic operators. In this program, we are
getting number as input from the user and reversing that number. Let's see a simple c
example to reverse a given number.

#include<stdio.h>

 int main()

{

int n, reverse=0, rem;

printf("Enter a number: ");

 scanf("%d", &n);

 while(n!=0)

 {

 rem=n%10;

 reverse=reverse*10+rem;

 n/=10;

 }

 printf("Reversed Number: %d",reverse);

return 0;

}

Output:

Enter a number: 123

Reversed Number: 321

8) Swap two numbers without using third
variable

Write a c program to swap two numbers without using third variable.

We can swap two numbers without using third variable. There are two common ways to
swap two numbers without using third variable:

1. By + and -

2. By * and /

Program 1: Using + and -

Let's see a simple c example to swap two numbers without using third variable.

#include<stdio.h>

 int main()

{

int a=10, b=20;

printf("Before swap a=%d b=%d",a,b);

a=a+b;//a=30 (10+20)

b=a-b;//b=10 (30-20)

a=a-b;//a=20 (30-10)

printf("\nAfter swap a=%d b=%d",a,b);

return 0;

}

Output:

Before swap a=10 b=20

After swap a=20 b=10

Program 2: Using * and /

Let's see another example to swap two numbers using * and /.

#include<stdio.h>

#include<stdlib.h>

 int main()

{

int a=10, b=20;

printf("Before swap a=%d b=%d",a,b);

a=a*b;//a=200 (10*20)

b=a/b;//b=10 (200/20)

a=a/b;//a=20 (200/10)

 system("cls");

printf("\nAfter swap a=%d b=%d",a,b);

return 0;

}

Output:

Before swap a=10 b=20

After swap a=20 b=10

9) Print "hello" without using semicolon

Write a c program to print "hello" without using semicolon

We can print "hello" or "hello world" or anything else in C without using semicolon. There
are various ways to do so:

1. Using if

2. Using switch

3. Using loop etc.

Program 1: Using if statement

Let's see a simple c example to print "hello world" using if statement and without using

semicolon.

#include<stdio.h>

 void main()

{

 if(printf("hello world")){}

}

Program 2: Using switch statement

Let's see a simple c example to print "hello world" using switch statement and without using
semicolon.

#include<stdio.h>

 Void main()

{

switch(printf("hello world")){}

}

Program 3: Using while loop

Let's see a simple c example to print "hello world" using while loop and without using
semicolon.

#include<stdio.h>

 void main()

{

 while(!printf("hello world")){}

}

10) Assembly Program in C

Write a c program to add two numbers using assembly code.

We can write assembly program code inside c language program. In such case, all the
assembly code must be placed inside asm{} block.

Let's see a simple assembly program code to add two numbers in c program.

#include<stdio.h>

void main() {

 int a = 10, b = 20, c;

 asm {

 mov ax,a

 mov bx,b

 add ax,bx

 mov c,ax

 }

 printf("c= %d",c);

}

Output:

c= 30

11) C Program without main() function

Write a c program to print "Hello" without using main() function.

We can write c program without using main() function. To do so, we need to use #define
preprocessor directive.

Let's see a simple program to print "hello" without main() function.

#include<stdio.h>

 #define start main

void start() {

 printf("Hello");

}

Output:

Hello

12) Decimal to Binary

Write a c program to convert decimal number to binary.

Decimal to binary in C: We can convert any decimal number (base-10 (0 to 9)) into binary
number(base-2 (0 or 1)) by c program.

Decimal Number

Decimal number is a base 10 number because it ranges from 0 to 9, there are total 10 digits
between 0 to 9. Any combination of digits is decimal number such as 23, 445, 132, 0, 2 etc.

Binary Number

Binary number is a base 2 number because it is either 0 or 1. Any combination of 0 and 1 is

binary number such as 1001, 101, 11111, 101010 etc.

Let's see the some binary numbers for the decimal number.

Decimal Binary

1 1

2 10

3 11

4 100

5 101

6 110

7 111

8 1000

9 1001

10 1010

Decimal to Binary Conversion Algorithm

o Step 1: Divide the number by 2 through % (modulus operator) and store the

remainder in array

o Step 2: Divide the number by 2 through / (division operator)

o Step 3: Repeat the step 2 until number is greater than 0

Let's see the c example to convert decimal to binary.

#include<stdio.h>

#include<stdlib.h>

int main(){

int a[10],n,i;

system ("cls");

printf("Enter the number to convert: ");

scanf("%d",&n);

for(i=0;n>0;i++)

{

a[i]=n%2;

n=n/2;

}

printf("\nBinary of Given Number is=");

for(i=i-1;i>=0;i--)

{

printf("%d",a[i]);

}

return 0;

}

Output:

Enter the number to convert: 5

Binary of Given Number is=101

13) Alphabet Triangle

Write a c program to print alphabet triangle.

There are different triangles that can be printed. Triangles can be generated by alphabets or
numbers. In this c program, we are going to print alphabet triangles.

Let's see the c example to print alphabet triangle.

#include<stdio.h>

#include<stdlib.h>

int main(){

 int ch=65;

 int i,j,k,m;

 system("cls");

 for(i=1;i<=5;i++)

 {

 for(j=5;j>=i;j--)

 printf(" ");

 for(k=1;k<=i;k++)

 printf("%c",ch++);

 ch--;

 for(m=1;m<i;m++)

 printf("%c",--ch);

 printf("\n");

 ch=65;

 }

return 0;

}

Output:

 A

 ABA

 ABCBA

 ABCDCBA

 ABCDEDCBA

14) Number Triangle

Write a c program to print number triangle.

Like alphabet triangle, we can write the c program to print the number triangle. The number
triangle can be printed in different ways.

Let's see the c example to print number triangle.

#include<stdio.h>

#include<stdlib.h>

int main(){

 int i,j,k,l,n;

system("cls");

printf("enter the range=");

scanf("%d",&n);

for(i=1;i<=n;i++)

{

for(j=1;j<=n-i;j++)

{

printf(" ");

}

for(k=1;k<=i;k++)

{

printf("%d",k);

}

for(l=i-1;l>=1;l--)

{

printf("%d",l);

}

printf("\n");

}

return 0;

}

Output:

enter the range= 4

 1

 121

 12321

1234321

15) Fibonacci Triangle

Write a c program to generate fibonacci triangle.

In this program, we are getting input from the user for the limit for fibonacci triangle, and
printing the fibonacci series for the given number of times (limit).

Let's see the c example to generate fibonacci triangle.

#include<stdio.h>

#include<stdlib.h>

int main(){

 int a=0,b=1,i,c,n,j;

system("cls");

 printf("Enter the limit:");

 scanf("%d",&n);

 for(i=1;i<=n;i++)

 {

 a=0;

 b=1;

 printf("%d\t",b);

 for(j=1;j<i;j++)

 {

 c=a+b;

 printf("%d\t",c);

 a=b;

 b=c;

 }

 printf("\n");

 }

return 0;

}

Output:

Enter the limit:9

1

1 1

1 1 2

1 1 2 3

1 1 2 3 5

1 1 2 3 5 8

1 1 2 3 5 8 13

1 1 2 3 5 8 13 21

1 1 2 3 5 8 13 21 34

Enter the limit:5

1

1 1

1 1 2

1 1 2 3

1 1 2 3 5

16) Number in Characters

Write a c program to convert number in characters.

Number in characters conversion: In c language, we can easily convert number in
characters by the help of loop and switch case. In this program, we are taking input from
the user and iterating this number until it is 0. While iteration, we are dividing it by 10 and
the remainder is passed in switch case to get the word for the number.

Let's see the c program to convert number in characters.

#include<stdio.h>

#include<stdlib.h>

int main(){

long int n,sum=0,r;

system("cls");

printf("enter the number=");

scanf("%ld",&n);

while(n>0)

{

r=n%10;

sum=sum*10+r;

n=n/10;

}

n=sum;

while(n>0)

{

r=n%10;

switch(r)

{

case 1:

printf("one ");

break;

case 2:

printf("two ");

break;

case 3:

printf("three ");

break;

case 4:

printf("four ");

break;

case 5:

printf("five ");

break;

case 6:

printf("six ");

break;

case 7:

printf("seven ");

break;

case 8:

printf("eight ");

break;

case 9:

printf("nine ");

break;

case 0:

printf("zero ");

break;

default:

printf("tttt");

break;

}

n=n/10;

}

return 0;

}

Output:

enter the number=4321

four three two one

	Fundamentals of C
	Features of C Language
	How to install C
	First C Program
	How to compile and run the c program
	By menu
	By shortcut

	Flow of C Program
	Execution Flow

	printf() and scanf() in C
	printf() function
	scanf() function
	Program to print cube of given number
	Program to print sum of 2 numbers
	Output

	Variables in C
	Variables in C (1)
	Types of Variables in C
	Local Variable
	Global Variable
	Static Variable
	Automatic Variable

	Data Types in C
	Basic Data Types
	Keywords in C
	C Operators
	Precedence of Operators in C

	Comments in C
	Single Line Comments
	Multi Line Comments

	Escape Sequence in C
	List of Escape Sequences in C
	Escape Sequence Example

	Constants in C
	List of Constants in C
	2 ways to define constant in C
	1) Const keyword
	2) C #define preprocessor

	C if else Statement
	If Statement
	Flowchart of if statement in C
	Output
	Program to find the largest number of the three.
	If-else Statement
	Flowchart of the if-else statement in C
	Program to check whether a person is eligible to vote or not.
	If else-if ladder Statement
	Flowchart of else-if ladder statement in C
	Program to calculate the grade of the student according to the specified marks.

	C Switch Statement
	Rules for switch statement in C language
	Flowchart of switch statement in C

	Functioning of switch case statement
	Output
	Switch case example 2
	C Switch statement is fall-through
	Output

	Nested switch case statement

	C Loops
	Why use loops in C language?
	Advantage of loops in C
	Types of C Loops
	do-while loop in C
	Output
	do while example
	Output (1)
	Program to print table for the given number using do while loop
	Output (2)
	Infinitive do while loop
	while loop in C
	Flowchart of while loop in C

	Example of the while loop in C language
	Output

	Program to print table for the given number using while loop in C
	Output

	Properties of while loop
	Example 1
	Output
	Example 2
	Output (1)
	Example 3
	Output (2)

	Infinitive while loop in C

	for loop in C
	Syntax of for loop in C
	Flowchart of for loop in C
	C for loop Examples
	Output

	C Program: Print table for the given number using C for loop
	Output
	Properties of Expression 1
	Properties of Expression 2
	Properties of Expression 3
	Loop body
	Infinitive for loop in C

	C break statement
	Syntax:
	Flowchart of break in c
	Example
	Output

	C break statement with the nested loop
	Output

	break statement with while loop
	break statement with do-while loop

	C continue statement
	Syntax:
	Continue statement example 1
	Output

	Continue statement example 2
	Output

	C continue statement with inner loop
	Output

	C goto statement
	goto example
	When should we use goto?

	Type Casting in C
	Note: It is always recommended to convert the lower value to higher for avoiding data loss.
	Type Casting example

	C Functions
	Advantage of functions in C
	Function Aspects
	Types of Functions
	Return Value
	Different aspects of function calling
	Example for Function without argument and return value
	Example 1
	Example 2

	Example for Function without argument and with return value
	Example 1
	Example 2: program to calculate the area of the square

	Example for Function with argument and without return value
	Example 1
	Example 2: program to calculate the average of five numbers.

	Example for Function with argument and with return value
	Example 1
	Example 2: Program to check whether a number is even or odd

	C Library Functions

	Call by value and Call by reference in C
	Call by value in C
	Output
	Call by Value Example: Swapping the values of the two variables
	Output (1)

	Call by reference in C
	Output
	Call by reference Example: Swapping the values of the two variables
	Output (1)

	Difference between call by value and call by reference in C

	Recursion in C
	Output
	Recursive Function
	Example of recursion in C
	Memory allocation of Recursive method

	Storage Classes in C
	Automatic
	Example 1
	Example 2

	Static
	Example 1
	Example 2

	Register
	Example 1
	Example 2

	External
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5

	C Array
	Properties of Array
	Advantage of C Array
	Disadvantage of C Array
	Declaration of C Array
	Initialization of C Array
	C array example
	Output

	C Array: Declaration with Initialization
	Output

	C Array Example: Sorting an array
	Program to print the largest and second largest element of the array.

	Two Dimensional Array in C
	Declaration of two dimensional Array in C
	Initialization of 2D Array in C
	Two-dimensional array example in C
	Output

	C 2D array example: Storing elements in a matrix and printing it.
	Output

	Passing Array to Function in C
	Methods to declare a function that receives an array as an argument
	C language passing an array to function example
	Output
	Output (1)

	Returning array from the function
	Output

	C Pointers
	Declaring a pointer
	Pointer Example
	Output
	Pointer to array
	Pointer to a function
	Pointer to structure

	Advantage of pointer
	Usage of pointer
	1) Dynamic memory allocation
	2) Arrays, Functions, and Structures

	Address Of (&) Operator
	Output

	NULL Pointer
	Pointer Program to swap two numbers without using the 3rd variable.
	Output

	Reading complex pointers

	C Double Pointer (Pointer to Pointer)
	Output
	C double pointer example
	Output

	Q. What will be the output of the following program?
	Explanation

	Pointer Arithmetic in C
	32-bit
	64-bit
	Output
	Traversing an array by using pointer
	Output (1)
	Decrementing Pointer in C
	32-bit
	64-bit
	Output

	C Pointer Addition
	32-bit
	64-bit
	Output

	C Pointer Subtraction
	32-bit
	64-bit
	Output
	Output (1)

	Illegal arithmetic with pointers
	Pointer to function in C
	Output

	Pointer to Array of functions in C
	Output

	Dynamic memory allocation in C
	malloc() function in C
	calloc() function in C
	realloc() function in C
	free() function in C

	C Structure
	Output
	What is Structure
	Declaring structure variable
	Which approach is good

	Accessing members of the structure
	C Structure example

	C Array of Structures
	Why use an array of structures?
	Output

	Array of Structures in C

	Nested Structure in C
	Output
	1) Separate structure
	2) Embedded structure
	Accessing Nested Structure
	C Nested Structure example

	Passing structure to function

	C Union
	Advantage of union over structure
	Disadvantage of union over structure
	Defining union
	C Union example

	File Handling in C
	Functions for file handling
	Opening File: fopen()
	Output

	Closing File: fclose()

	C fprintf() and fscanf()
	Writing File : fprintf() function
	Reading File : fscanf() function
	C File Example: Storing employee information

	C fputc() and fgetc()
	Writing File : fputc() function
	Reading File : fgetc() function

	C fputs() and fgets()
	Writing File : fputs() function
	Reading File : fgets() function

	C fseek() function
	C rewind() function
	C ftell() function
	C Preprocessor Directives
	C Macros
	Object-like Macros
	Function-like Macros
	C Predefined Macros
	C predefined macros example

	C #include
	#include directive example
	#include notes:

	C #define
	C #undef
	C #ifdef
	C #ifdef example

	C #ifndef
	C #ifndef example

	C #if
	C #if example

	C #else
	C #else example

	C #error
	C #error example

	C #pragma
	Command Line Arguments in C
	Example

	C Strings
	Difference between char array and string literal
	String Example in C
	Traversing String
	Using the length of string
	Output
	Using the null character
	Output (1)

	Accepting string as the input
	Some important points

	Pointers with strings
	Output
	Output (1)
	Output (2)

	C gets() and puts() functions
	C gets() function
	Reading string using gets()
	Output
	Output (1)

	C puts() function
	Output:

	C String Functions
	C String Length: strlen() function
	C Copy String: strcpy()
	C String Concatenation: strcat()
	C Compare String: strcmp()
	C Reverse String: strrev()
	C String Lowercase: strlwr()
	C String Uppercase: strupr()
	C String strstr()
	String strstr() parameters
	String strstr() example

	C Math
	C Math Functions
	C Math Example

	C - Error Handling
	errno, perror(). and strerror()
	Divide by Zero Errors
	Program Exit Status

	Searching and Sorting Techniques
	Searching Technique
	1. Linear Search
	2. Binary Search

	Linear Search
	This is the simplest searching technique where each element is compared with the element to be searched.

	Binary Search
	Pictorial presentation - Binary search algorithm
	Sorting Techniques

	Selection Sort
	Bubble Sort
	Insertion sort
	Merge sort
	C Programs
	1) Fibonacci Series
	Fibonacci Series in C without recursion
	Fibonacci Series using recursion in C

	2) Prime number
	Note: Zero (0) and 1 are not considered as prime numbers. Two (2) is the only one even prime number because all the numbers can be divided by 2.
	3) Palindrome number
	Palindrome number algorithm
	4) Factorial
	Factorial Program using loop
	Factorial Program using recursion in C
	5) Armstrong number
	6) Sum of Digits
	Sum of digits algorithm
	7) Reverse Number
	8) Swap two numbers without using third variable
	Program 1: Using + and -
	Program 2: Using * and /
	9) Print "hello" without using semicolon
	10) Assembly Program in C
	11) C Program without main() function
	12) Decimal to Binary
	Decimal Number
	Binary Number
	Decimal to Binary Conversion Algorithm
	13) Alphabet Triangle
	14) Number Triangle
	15) Fibonacci Triangle
	16) Number in Characters

